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Abstract. On the basis of theRTT = TT R’ formalism, we introduce the quantum double

of the YangianYy(g) for g = gly, sy with a central extension. The Gauss decomposition of
the T-matrices gives us the so-called Drinfel'd generators. Using these generators, we present
some examples of both finite- and infinite-dimensional representations that are quite natural
deformations of their corresponding affine counterpart.

1. Introduction

In the last few decades, the quantum inverse scattering method (QISM), initiated by Faddeev
and co-workers, has been studied extensively and has produced rich structures in both
physics and mathematics. The quantum algebras called the quantized universal enveloping
algebraU, (g) and the Yangian;(g) are some of the most important fruits inspired by

the QISM. They have unexpected connections with such, at first sight unrelated, parts
of mathematics as the construction of knot invariants, the geometric interpretation of a
certain class of special functions and the representation theory of algebraic groups in the
characteristicp. Of course they also have many nice applications in theoretical physics
such as quantum field theory and statistical mechanics. As is well knbBy() describes

some features of conformal field theory. One can solve lattice models, like th(a?1 spin-

X XZ model, as an application of the representation theoryqojﬁ[z) The quantum affine
algebrav, (sl) is the g-deformation of the enveloping aIgebUa(s 2). The YangianYz(g)

is also related to conformal field theory. Lattice models such as the Haldane—Shastry
model are known to posse¥s(sly)-symmetry. The Yangia;(slz) is the i-deformation

of the enveloping algebr& (sl;[r]). The quantum double [Dr1] of th&;(g), which we

shall refer to as Yangian doublBY7;(g), seems to play important roles in massive field
theory [BL, LS, S]. In these works, the Yangian doulil7(g) is the A-deformation of

the universal enveloping algebra of the loop algeffrar—] for g = sl», without central
extension In view of the lattice models, like the spi%1-XXX model of infinite chains, it
seems necessary to construct the Yangian dofbig(g) with a central extension. In our
previous paper [IK], we defined the Yangian doul¥7(g) with a central extension for

g = gl, or sl,. The present paper is a higher rank generalization of it. Our attempt here is
to explain the background of the construction and to consider the representation theory. We
also summarize some formulae related to our calculations which seem well known to the
specialists but have never appeared in the literature. The main topics treated in this paper
are as follows.
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1. Yangian double

The Yangian doubléY;(g) has been introduced into the literature in terms of Chevalley
generators [LS], th&*-matrix [BL] for g = sl, and Drinfel’d generators [KT] for a simple
finite-dimensional Lie algebrg. Here we construcDYz;(g) for g = gly, sly by means of
the QISM [BL, RS, RTF]. Namely, leR(x) be the YangR-matrix. The algebr@Yzr(gly)

is defined through quadratic relations of the form

R(u — v)(T*(u) ®id)(id @T*(v)) = (d@T*())(T* (1) @ id) R(u — v)

R —v— he)(THw) @ id)(d ®T ™ (v)) = (d ®T~ (V)T (u) ® id)R(u — v + 3fic)
wherec is a central element aDY;(gly). The T*-matricesT=*(u) = (t,%(u))lg,v,jg,v are
expanded as

+ - I3 ko —k=1 - _ T k. —k—1
) =8;—h Yy thu ) =8+ Ry thu™* L
k>0 k<0

Just as in the case dﬁq(ﬁln) [DF], we consider the Gauss decomposition of theé-
matrix (theorem 3.2) and obtain the Drinfel'd generatorsDdf;(gly) (theorem 3.3). We
defineDYz(sly) as a certain subalgebra D7 (gly) and show that our Drinfel’'d generators
recover the results obtained in [KT] at level 0 (corollary 3.5). We also introduce another
subalgebra oDY;(gly) which we call the Heisenberg subalgebra.

2. Representation theory

Here we investigate several examples. The main tool here is the Drinfel'd generators.

Finite-dimensional representationsAt ¢ = 0, the Heisenberg subalgebra Dffz(gly)
becomes the centre of it. So we will concentrateldfy (sl ) case without loss of generality.
From the commutation relations @Yz (g) at level O (corollary 3.5), we expect that the
analogue of the classification theorem of irreducible finite-dimensional representations holds
just as in the case of Yangiah (g) [Dr3]. We present some examples which support our
conjecture. All of them are ones that we call evaluation modules.

Infinite-dimensional representationsUnfortunately we have no proper definition of
highest-weight modules due to the lack of the triangular decompositidnYpfg). Here
we realize level DYz (gly)-modules on the boson Fock spagg, (0<i < N—1,5 € C)
(theorem 4.5). Let/, be anN-dimensional evaluation modules &fY7 (gl ). The vertex
operators are intertwiners of the form

¢(i,i+l)(u) CFis —> Fiso1®V,
\I/(i’i+1)(u) : ]:i+1,5 — V,® -7:1',571'

We also give the bosonization of the vertex operators (theorem 4.6). Forfihely) case,
we construct level 1 modules on the boson Fock spgacf < i < N — 1) (theorem 4.7)
whose quantum affine versions are obtained in [FJ]. We should mention that every field
defined above makes sense as a formal serids iMoreover, we also construct vertex
operators forDYz(sly), in which case the Fourier components lose their meaning (theorem
4.8). More precisely, those formulae makes sense only as an asymptotic series.

The text is organized as follows. In section 2 we recall the definition of Yangiar.
We also mention the other set of generators and the isomorphism between them. The theory
of finite-dimensional’; (g)-modules is also reviewed and one example is given. In section 3
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we defineDYr(g) for g = gly,sly. We rewrite the commutation relations in terms of
Drinfel’d generators. In section 4 we present a conjecture for finite-dimenslohakly )-
modules together with a few examples. As for infinite-dimensional representations, we
construct level 1 modules and vertex operators directly via bosonization. Section 5 contains
discussions and remarks. For the reader’s convenience, we also include two appendices. In
appendix A we give a brief review of quantum groups, in particular the univ&tsand
L-operators. In appendix B we collect some formulae fematrices.

Let us mention that the author got two papers [K1, K2] when he was preparing this
paper. The central extension &fYz(sly) is introduced in [K1] which has some overlap
with [IK]. The bosonizations of level DYz (sl;)-module and the vertex operators among
them are obtained in [K2]. Here we introduce the Yangian do@hig(g) for g = gly, sly
with a centre and obtain the bosonization of levéP ¥;(g)-module and the vertex operators
among them.

2. Review of the YangianY;(g)

In this section we collect some known facts about Yangians, including representation theory.

2.1. Yangiant;(g)

Here we present two different realizations Bf(g) for a simple finite-dimensional Lie
algebrag. In addition, forg = sly, another realization called th&-matrix is known
[Dr1, Dr2], and we make some comments on it.
Set A = C[[]]. Let g be a simple finite-dimensional Lie algebra afad, a, - - -, @, }
the set of simple roots. Fix a standard non-degenerate symmetric invariant bilinear form
(-,-) on g. For each positive roat of g, choose root vectors® in +a root spaces such
that (x;, x,) = 1 and seth, =[x}, x,]. We denote the Cartan matrix gfby A = (a;;).
Let {I,} be any orthonormal basis gfwith respect to the inner product, -).
Definition 2.1 ([Dr3]). The YangianYz;(g) is a topological Hopf algebra oved generated
by g and elementd (x), x € g, with relations

J(ax +by) =alJ(x)+bJ(y) a,be A [x, JM] = J(x, yD
[J), Iy, zDI + [V (), (2, xD] + [/ (@), J ([x, y]D]
= Ez Z([’“ Iﬂ]v [[yv Iq]’ [Z, Ir]]){lpa qu I}

p.q.r

=1 ((x, L) [y, 1], [Tz, w], 11D

p.q.,r

+ (z, L], [Tw, 1], [[x, ¥1, £ID) . 1, T (1)}
where{, -, -} denotes the symmetrization

1
{x1, x2, x3} = 22 Z Xo ()Xo (2) X5 (3)-

0663

The comultiplication ofY;(g) is given by
AX)=x®@1+1®x
AUJ@) =J®) ®1+1® J(x)+ 3hlx ® 1, Q]
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where Q2 stands for the Casimir element gfg g.

Drinfel’'d [Dr3] has shown that there are so-called Drinfel'd generatork;¢f). To be
precise, the following theorem holds.

Theorem 2.1 ([Dr3]).The YangianY;(g) is isomorphic to the algebra generated by the
elements{éﬂ,f, kil <i <n, k € Zso} subject to the relations

[kik, k)] =0 [kio, ‘éﬁ] = + (o, aj)éjj;t (6. &1 = Sijkciksa
[k 1, 7] — [k &7 4] = 30, )R, &1+
[éijkzﬂ» éjjlt - [Eifv ‘gjﬁlt-rl] = :I:%(ot,-, aj)}_l[sij/:’ Ejﬂlt]*

Z [gi:}(:d(l)’ [ T [gizlfd(/zr)’ s]:}:] = O for l # .]

ceS,,

where we sein = 1 —ga;; and [x, ]+ = xy + yx for x, y € Yz(g). The isomorphismp
between two presentations is given by

¢ (hi) = Kio () =&
¢ (J(h) = ki1 + hip (v;) ¢(J(xD)) = &5 + hp(w?)

where we set; = h,,, x;" = xZ and

1 1
— Naxtr— 4 x—xF) — K2
vi = E (o, o) (xy X, + x5 %) Qh’

a>0

1 1
wE = :l:zr Z{[xii, XxExF  xF[xE 2 — zl(xiih,- + hix).

a>0

For g = sly, we have another realization call@dmatrix [Dr2, Dr3] as follows.
Let V be a rankN A-free module and® € EndV ® V) be a permutation operator
Pvw=w®uv (v,w € V). Consider Yang’'sk-matrix normalized as

1 _
R(u) = —— (ul +RP) e EndV ®@ V). (1)
u—+nh

where/ is expanded in positive powers. Thismatrix satisfies the following properties:
Yang—Baxter equation:

Rio(u — v) Riz(u) Ra3(v) = Ro3(v) Rig(u) Rio(u — v)
Unitarity:

R12(u)Ro1(—u) =id.
Here, if R(u) = Z(J,’ ® b; with a;, b; € End(V), then Ro1(u) = Zb, ® a;, Riz(u) =
Za,» ® 1® b; etc.

Theorem 2.2 ([Dr3]).The YangianYz(sly) is isomorphic to the algebra with generators
{tf,11<i, j <N, k € Zzo} and defining relations

R(u — v)]l‘(u)Yz"(v) = ]%(U)Zl‘(u)R(u — ) g-detT (u) = 1.
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Here
T = ;)i j<n tij(u) =68 —h Z tikju_k_l
k€Z=o
1 . 2 .
Tw)=Tw) ®id Tw) =id®T (u)
andg-detT (1) is defined in proposition B.4. The comultiplication is given by

N
Al ) =yt () ® s ().
k=1

Roughly speaking, the isomorphism between the algebra generated by the Drinfel'd
generators and the algebra presented above is given by the Gauss decomposition of the
T-matrix (see section 3 and appendix B.2 for details).

2.2. Representation theory &f(g)

In this subsection, we give a brief review on finite-dimensional representatiofg(®f.
See [CP1, CP2] for detail.

Let h = {hi,}i<i<n.rez., D€ @ subset 0fA. A Yz(g)-moduleV is called thehighest-
weight module with highest weight if there exits a unique, up to scalar, non-zero vector
v € V such thatV is generated by and

KirU = hi,v é‘giﬁv:O 1<Vi<n VYreZso

It is known that every irreducible finite-dimension#}(g)-module V is highest-weight
module. Let us denote the irreducible highest weibfy)-module with highest weight
by V(h). The criterion of the finite-dimensionality df (k) is known.

Theorem 2.3 ([Dr3]).The irreducible Y;(g)-module V (h) of highest weighth is finite
dimensional if and only if there exist monic polynomids(v) € A[v] 1 <i < n such that

P;(v + (o, ai)h) R 1
=1+h h,;,.v_’_
R 2

in the sense that the right-hand side is the Laurent expansion of the left-hand side about
v = OQ.

The polynomialsP; (v) in this theorem are called Drinfel'd polynomials.
The preceding theorem suggests the following definition.

Definition 2.2 ([CP2]).We say that an irreducible finite-dimension#}(g)-module is
fundamentalif its Drinfel’d polynomials are given by
V—Uu ] =1
Pi(v) =
1 jAi
for some 1< i < n.

Using the fact that the Drinfel’d polynomials of the tensor product of two highest-weight
modules are the product of the Drinfel'd polynomials of two highest-weight modules, one
proves the following.

Theorem 2.4 ([CP2]) Every irreducible finite-dimensional;(g)-module is isomorphic to a
subquotient of a tensor product of fundamental representations.
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Here we present an example of fundamental representatidfy(efy) and the more
general representations containing the first example.

Example 2.1Set
V=V @4 Alu] V= Aw;.

Yr(sly)-module structure otv, is defined via the following actions:

. N—-1—-i_\" . .

0) ELw; = ('4 - Zh) w;—1 Efw; =0 j#i

. N—-1—i_\"

(ii) £ wi g = (u - 2’h> wi  Ew;=0 jAi—1
N—-1-i\

(iii) KirWi—1 = (M - Zlh> Wi—1

2

Note that one can regardas either an indeterminate or an elementdofin the latter case,
the Drinfel'd polynomials ofV, are given by

N-1-i_\"
KirW; = —(u — h) w; KirWj =0 ]?él,l -1

Pl(v)zu—(u—Nz_ZE) Pv)=1 i#1

Let us fixg to be a simple finite-dimensional Lie algebra of classical type and normalize
the invariant bilinear form by the conditio¢8, 8) = 2 (8: long root). The fundamental
weights A; (1 < i < rankg) are chosen so as to satisfy

(Ai, aj)

(o, aj)

2

=i

Example 2.2L et V(A) be the irreducible highest weightmodule with highest weight.
Especially whenA is of the formmA; with m being positive integer, it is known from
[KR]if gisoftypeA; (B;,C;,D)and 1<i <l (i=1i=1,i=11-11)thenV(mA;)
can be made intd%(g)-module. LetV,(mA;) be suchyz(g)-module satisfying

0] Vo.(mA) = V(imA;) as ag-module
(i) SO, man = axlv,ma) Vxeg.

The Drinfel'd polynomials ofV,(mA;) are given by

m

P =]T{u—(a=Ge—i+zmh}  P@=1 j#i
k=1

whereg is the dual Coxeter number.
3. The algebraDY;(gly)

Here we define a central extension Bz (g) for g = gly, sly following the method of
[RS].
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3.1. Yangian doubl®Yz(gly)

Let us choose Yang'®-matrix as in (1).

Definition 3.1.DYz(gly) is a topological Hopf algebra ovet generated byz{;|1 <i,j<
N, k € Z} andc. In terms of matrix generating series

T*(u) = (t;; W)1<i j<n

+ _ . k., —k—1 - _ - ko —k—1
() = 8;; —h Z thu t;; () = 8; +h Z thu
keZxo keZ o

the defining relations are given as follows:

[T*@),c] =0

1y, (24 2 At
R — )T )T () =T()T~ ()R —v)
1 2 2 1

Ru_ —v )T )T~ (v) =T~ W T @) R(uy —vo).
Here

1 . 2 .

Tw)=Tu) ®id Tw) =idQT (u)
ur =u+ %f_lc and similarly forv. Its coalgebra structure is defined as

N
A W) =Y 65w+ Shea) & t (u F Fhey)
k=1

e(T*w) =1 SCT*w) = [T w]™*
Alc)=c®1+1®c e(c)=0 S(c) = —c
whereci=c® 1 andec; =1Q®c.

Note that the subalgebra generatedzkﬁjyl <i,j <N, ke€Zso}isYr(gly) [Dr2, Dr3]
and the algebr®Yz(gly) is the quantum double df;(gly). Let us define the pairing, -)
betweenT*(u) as follows (cf [RTF]).

(T (), T~ (v)) == Z {15 ), t; (W) Eij ® Eyg = R(u — v).
ikl

It seems that the following theorem is well known to the specialists.
Theorem 3.1The pairing(:, -) gives the Hopf pairing.
The crucial point of the theorem is its non-degeneracy. We could check the non-

degeneracy foN = 2 directly. For the motivation of our choice, see appendix A.

3.2. Drinfel'd generators

We introduce the Drinfel'd generators &fY;(gly) exactly in the same way as in [DF].
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Theorem 3.27*(u) have the following unique decompositions:

1 0\ /ki() 0
Ti(u)z fZIFl(M)
Q) Sun_a@) 1 0 ki (u)
1 efz(u) efN(u)
X
61%171,1\/(”)
0 1

To prove this theorem, we have only to show that each compafjerit), k- (1), 5, ()

is well-defined element aP Y (gly)[[«T]]. From the explicit formulae of these elements in
terms of quantum minors, given in appendix B.2, it immediately follows since our algebra
DYz (gly) is h-adically completed. Set

X ) = fiigi @) = fii,o)

X;r(u) = ei’iH(u,) — € q(uy).
They satisfy the following commutation relations.
Theorem 3.3.

ki (ki (v) =k (0)k;" (1) K k; (v) = k7 (k)

Ug — 1,4 Uy — + 1 . .
7k$ k; 7_k k+
—vi—i-h’(v) (u) = s +h,(u) v~ >

KE )X () (u) =

— h
He TV R )
U4 —

k) X )k w) ™t = w&f (v)

I/t;F —_
—v—"h
e X} (v)

z+1(”) 1X+(v)kz+1(”) ﬁ

ki, () X7 (kS () = wmv)
U — v

K )Xk w) = X ) kX k)t =X (v)  otherwise
u—vFRD)XEFWXFEW) = (u—v £ X)X )

—v+MX WX}, ) = @ — )X )X W)

U — )X WX, (v) = @ —v+R)X (V)X ()

X7 ) X7 ) X (v) — 2X () X () X[ (u2) + X5 (0) X[ () X[ (u2)

+{uy < uy} =0 i—jl=1
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XF )X W) = X ()X () li—jl>1
[X[ ), X; ()] = Rdij {8 — vk 3 )k @)™ = 8y — vk (v)k (v) 7
Heres(u —v) = >, ., u "1k is a delta function.
One can prove the above theorem in exactly the same way as in [DF] fdfqm)
case.
3.3. Two subalgebras

To decomposé®Yr(gly) into two subalgebra®Yz(sly) and a Heisenberg subalgebra, we
introduce the following currents:

) ) 1
HE(u) = kfyq (u+ 3Rk + 3hi)™ K*(u) = nki (“ * ( N; >h>

E;(u) = Ex+(u + Shi) Fi(u) = Ex (u + 3hi).

We defineDY5(sly) to be the subalgebra @Y (gly) generated b)Hii(u), E;(w), Fi(u)

andc. A Heisenberg subalgebra @Y;(gly) generated byK*(u) commute with all of

the elements oDY;(sly). In fact we see that the formul&*(u) = g-det.T*(u) holds

as a consequence of theorem B.15. (See appendix B.2 for the definitipuletfT*(u).)

In terms of these generators, the above commutation relations can be rephrased as follows.
Let A = (a;;) be the Cartan matrix of the Lie algebs&y.

Corollary 3.4.
[H), H )] =0

(uz — vi + 7 Bij) (s — vy —hBy) H (W) H (v)
= (uz — va —hB;j)(us — vy + By H () H* ()

[K=u), K*(v)] =0 flu —v)Kt@K () = K~ K@) f(uy —v-)

(1)1 + hBlz
+ _ +, 1 Uz —v—hBy
H*(u) F; (v) HE () 7+hB”F( v)

[K°(w), H ()] =[K°(u), E;()] =[K°(w), F] =0  VYo=+ Vi
(u—v—hB)E;m)E;(v) = u —v+hB;)E;(v)E;(u)
u —v+RBij)F,(w)F;(v) = (u — v — hB;j) F;(v) F; (1)

Z [Fi(uow), [Fi(uo@) -, [Fi(Uomm), Fi(0)]---1=0 i#j m=1-aq;
ce’,,

Z [Ei(uo), [Ei(ue) -, [Ei(tgm), E;(0)]--] =0 i#j] m=1-a;
eSS,

1
[Eiw), Fr)] = 8 (8- —vi) H () = 8(uy — v ) H (v2).
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Here we have seB;; = (e, &) and

N-1 T
u— jh
flu) = —-
jll u+ jh
To compare with the known results at = 0 [KT], let us write down the

commutation relations componentwise. The Fourier components of the generating series
HF(u), E;(u), F;(u) are of the following form:

H(u) = 1+EZ higu ™ 1 H™ () = 1-%2@{“

k=0 k<0

Ei(u) = Zeiku_k_l Fi(u) = Z fu ™ L

keZ keZ

For ¢ = 0, the commutation relations @ Y;(sly) in terms of the above Fourier component
look simple as follows.

Corollary 3.5.
[hic, hj] =0 [hio, xﬁ] = :I:2B,-jxj°§ [x%, x;] = Sijhikw
[hitst, xji;] — [hir, xjﬂl] = hBij[hi, xjsz]Jr
[xl.j,;l,xjj[E - [xi,xﬁﬂ] = iﬁBij[Xi,xﬁ]Jr
Z [xijlzcu(n’ [xij/za(zﬂ T [xiﬂ’:wm’x.fil ] =0 i 7& ] m=1- dij
0EG,

for k,1 € Z, where we sek;t = e, x;; = fu and [x, y]4 = xy + yx for x, y € DY5(sly).

These relations are the same as in [KT] witk=" 1. The sef{A;;, xf,ﬂl <i<N-1lke
Z>o} provides the Drinfel'd generators of;(sly) [Dr3].
Let us set

1 . 1 _
Ef(u) = ﬁeiﬂ,tiﬂ("’i + 3hi) F(u) = 7 Fra (s + D)

so thatEF(u) = E (u) — E; (u), FX(u) = F"(u) — F, (u). (See theorem 3.2 for the
definition of e;,,(u) and f7;,(u).) Let us denoteDY for DY¥s(sly) and DY* be the
subalgebra oDY generated by; «, f;«, respectively. Set

Nt = inj,fDYi.
ik

We get the partial results of the coproduct of the currdtitsu), F(u), H* (u), K*(u)
which is sufficient for our purpose.

Lemma 3.6.

(i) AEEw) = EF(u) ® 1+ HF (uz) ® EX(u F Lher)
(ii) AFF () = 1® F(u) + Fi (u + 3hez) © H (uz)
(iii) A(HFu)) = H (u & hep) ® Hi (u F Shey)

modN DY  DYN ) N (DYN™ @ NTDY)

(iv) AK* () = K*(u + Jhco) ® K*(u F 3hey).
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The last formula follows from the fact that the equati&iff (1) = g-det.T*(x) holds.
We remark that these formula faf (sly) are obtained in [CP2]. The exact formulae in the
case ofDYz(gl,) are given in [IK]. For more information on the coproduct formulae, see
appendix B.

3.4. Quantum current

Here we give a remark concerning definition 3.1 and introduce the so-called quantum current
[RS].

Let R(u) be Yang’s R-matrix normalized as (1) an®(u) = fy(u)R(u) with some
scalar functionfy (u). We remark that even if we change the normalizatiomReahatrix in
definition 3.1 toR (1) defined here, the commutation relations given by corollary 3.4 never
change except for the relations betweléfi(x). It changes as follows:

flu- —v)K @K™ (v) = K- ()K" @) f(uy —v-)

where
N ‘ ._ N-1 u— ki
fu) = iEIfN(u + @ — j)h) ]1:[1 P
If we set
I'(u/NI)T(+ u/Nh)

N = LN u/NIDFA = 1/N +u/NR)
whereI'(u) is the Euler's Gamma function, thefiu) = 1. In the rest of this subsection,
we fix the functionfy (1) as above. Let us define the quantum currgqt) as

Tw) =T u )T (uy)™2.
They satisfy the following commutation relations.
Lemma 3.7.
R(u = v)T @) Roa(v —  — F)T (v) = T () R(u — v — he) T) Roa(v — 1)

1 2 2 1
R(u_ —v)T @) Raa(v- — u)T*(va) = py (s — vi) T (v)T (1)
wherepy (1) = fn W) fn(—u).
SinceT (1) can be regarded asM x N matrix, we can define the currehtu) by
I(u) = tr.T ().

At the critical level ¢ = —N), one can show thdi(x) commutes withT* (1) so thatl(u)
provides the Yangian deformed Gelfand-Dickii algebra [FR].

Remark .Everything given in this section makes sense as a formal serieseittept for

this subsection. Since the functigiy (1) chosen here cannot be regarded as a formal series
in 7, the formulae given after the specific choice £f(x) must be considered only as
asymptotics.

4. Representation theory ofDY7;(g)

Unfortunately, we have no general theorem about the representation thedmy;6f)
at the moment due to the lack of triangular decomposition and the grading opérator
Nevertheless, we expect that the representation thedBYgtg) can be established just as
in the case of quantum affine algebra [CP, J].

In this section we present examples of both finite and infinite-dimensional
representations dbYz(g).



4604 K lohara

4.1. Finite-dimensional representations

At ¢ = 0, the Heisenberg subalgebra becomes centrdb¥f(gl,). Hence by Schur's
lemma, it is sufficient for investigating the irreducible finite-dimensional representations
to consider theDY;(sly) case. From corollary 3.5, we expect that most of the finite-
dimensionalYz;(sly)-module can be extended 10Y;(sly)-module.

Let d = {dix}1<i<n-1kez e a subset ofd. A DYi(sly)-module V is called the
pseudo-highest-weight module with pseudo-highest welglfitthere is an unique, up to
scalar multiple, non-zero vectare V such thatV is generated by and

hixv =d; v eixv=0 I1<Vi<N-1 VkelZ.
Here we borrow this terminology from [CP]. Let us dendtéd) for suchV.
Conjecture 1.(i) Let V be an irreducible finite-dimension&j(s(y)-module whose constant
term of the Drinfel'd polynomials are invertible. Thén can be lift up to an irreducible
finite-dimensionalD Y7 (s[y)-module.

(i) The irreducible DY (sly)-module V(d) of pseudo-highest weightl is finite
dimensional iff there exist monic polynomial3(v) € A[v] 1 <i < N — 1 such that

_ Pi(v+ (e, a)h) _
1-7% dpv 1= 2 =14k dyv*?

in the sense that the left-hand side and the right-hand side are the Laurent expansion of the
middle term about 0 ando, respectively.

The above monic polynomialg; are called Drinfel’d polynomials. Next we show some
examples which support this conjecture.

Example 4.1 (thel, case).Here we omit writing the subscript 1 for simplicity. Let
W, = EB;”:OAw, be the sping representation ofl; and set
Wi () = Wy @4 A((u™)

whereu is thought to be either an indeterminate or an invertible element.dt is known
by [CP1] that we can define th& (sl,)-module structure ofV,, (u). It immediately follows
that their action oft;(sl;) can be extended t®Y5(sl).

Lemma 4.1 The actionDYz(sl) is given by

() e w; = {u + (%m —i4+ %)E}k (m—i+ Dw;_q
(i) fewi = {u+ Gm—i = HRY G+ Dwigs
(i) hw; = [ {u+ Gm —i = DAY G+ Dom =)

—{u+ Gm—i+ DAY in =i+ D] w;
where we setw_; = w,, 11 = 0.
As a consequence, we obtain the following.

Corollary 4.2. () W, (1) is a pseudo-highest-weight module with pseudo-highest-weight
d = {d,} given by

m—1\*
di=m M+Th .
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(i) The Drinfel'd polynomial P associated wittW,, (1) is given by
P(v) = m—lﬁ m—3}_l +m—1ﬁ
V) =13V u 2 v u 2 v u 2 .
Example 4.2 (thely case (vector representation))et u be either an indeterminate or an
invertible element ofd. Set
Vi=VeuAw™)  V=el A,
We can extend the action 6f;(sly) to DY;(sly) as follows (see example 2.1).

Lemma 4.3The action ofDY (sly) is given by

k

. N—-1—i_
() i = (u— 2h> wia ey =0 j£i

. k
.. N—-1—i_
(ll) fi,kw,-_l = (u — zll’l> w; f,-,kwj =0 ] 75 i—1
N-1-i\*
(lll) hi,kwi_l =\u— #h w;_—1

k
N—-1-—i
hi,kwi = —<u — Zlh> w; h,-’kwj =0 jF#EI,i— 1.

Hence we have the following.

Corollary 4.4. (i) V, is a pseudo-highest-weight module with highest weight= {d;;}
given by

N—2\*
d1k=<u—2h> d,k=0 l;él
(i) The Drinfel’'d polynomialsP; associated td/, are given by
N-—-2_
Pl(v):v—<u—2h) Pw)y=1 i#1

The next example is the generalization of the above example.

Example 4.3 (thely case).Let g be a Lie algebra of typd y_1. In example 2.2, we define
irreducible finite-dimensional;(g)-modulesV,(mA;) for 1 < i < N — 1. Here we give
a sketch of proof that we can extend its action#;(g). To see this (i) DefineDYz(g)-
module structure form = 1,V i. ( Calculate the action on each weight vector explicitly,
then it turns out that the invertibilty in the conjecture is essential.)
(i) Using the following embedding of7(g)-module
Val(m +DAy) = V,_15(mA;) ® Varngr(Ag)

a=3

prove that we can definBY;(g)-module structure fo¥ m, V i by induction onm.
The details are left to the reader as an exercise.
Note that the Drinfel’d polynomials of,(m A;) are exactly the same as in example 2.2.
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4.2. Bosonization of the level 1 module

Here we construct level DYz (g)-module and vertex operators fgr= gly, sly directly in
terms of bosons.

Let h = @Y ,Ce; be a Cartan subalgebra ofy, 0 = Y 'Za; (; = & — i11) be
the root lattice ofsly, A; = A; — Ap be the classical part of thigh fundamental weight
and (-, -) be the standard bilinear form defined by, ¢;) = §;;. Let us introduce bosons
{aix]ll<i < N, k € Z\ {0} satisfying

laik, aji] = kéi, jSk+10-

4.2.1. Thegly case. Set
Fiyi=Alaj x1<j <N, keZ.g)] @ A[Q]eM TN (0<i<N-1)

wheres is a complex parameter and O] is the group algebra of over A. On this space,
we define the action of the operatarg, o;,, ¢ (1< j < N) by
ajrf ® ef k<0
I ef =
[aj,k,f]®eﬂ k>0

¥, - f®’ =(ej, B f @ e for f@ef e

el - f Ref = f ® efith.
Theorem 4.5The following assignment defines7a¥z (gl )-module structure otf; ;.

aj k 1.\7* 1.\7* u— LR\ %
e

_ a, _ — a, _ —
kj(u)|—>exp|:z kk{uk—(u—h)k}—l- > kk{(u+h)k—uk}:|

k>0,r<j k>0,r>j

1 aj —k 3_ k aji1,—k 1_ k

k>0 k>0

i — 1.\ * , 1.\ 1%
x exp B (u + I_z) e |:(—1)J_1(u + F):|
= k 4 4

L) > ex P 1ﬁk PIRAE +37,k
gt e exp K \“ "3 “x \"T3

k>0 k>0

—k —0y;
» ikt a1k 1 e 1 1\ ™
ex _ - ——h il (=1)/ — A
" p|:k>0 k <u 4 ) ] ‘ [( T\

where we set,, = 9, — 9

Ej+1t

Next we present the bosonization of type | and type Il vertex operators. For this purpose,
let us consider the evaluation module. Set

Vi=V @4 A" V =l Aw;.
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We define theDYz(gly)-module structure orv, as follows:
v—u+(3(N—-3) — ik

+ = fEp =
Kl = f20 =0 A T o

kK (w; = f*(v —u)w; otherwise

_ N-1 _
XF(ww; = h8<v —u+ <2 - i)h)wi_l X;“(v)wi = 0 otherwise

_ N-1 _ .
X (Wwj—1 =hs <v —u—+ (2 — i)h)wi X, (Ww; = 0 otherwise
where we set
u— (N -DR
tuwy =1 “w)y=—2_ "
fra f0= N

We remark that the restriction of the action®¥#7(gly) on the abové/, to that of DYz (sly)
givesV, in example 4.2 exactly.

Definition 4.1.The vertex operators are intertwiners of the following form:

()type l: V@) Fyy— Fii1®V,
(i) type 1l: WY@ L Fryyy — V, @ Fisot.
Here the indices are considered modnio

Set

N-1 N-1
(ID(iA,i-&-l)(u) — Z <D1(11+1)(u) ® wj \If(i’i+l)(u) — Z wj ® lyj(tl-‘rl)(u)
=0 =0
We normalize them as

0) (Aiys — UDE P )| Aryr,s) = 1
(il (Aivs — U@ A,s) =1

where we sefA;, s) = 1® e EL9/N  We mean by(A;, s — 110"V )| A4y, 5) the
coefficient of|A;, s — 1) of the element® "™ (u)|A, 1, s), and similarly forw " ().

With the above normalization our vertex operators uniquely exist. By using lemma 3.6, we
obtain the bosonization formula of these vertex operators as follows.

Theorem 4.6 (bosonization of vertex operatoBR)r 0<i < N -1

(D(i,i+l)(u) — exp Z an,—k - ﬁ +1_ - k
N-1 — &k 2 ' 4
x exp[ > ok < (N L ')E)k]
ALY (7R [ —
k>0;1<j<N k 2 4

o5, +(N—i—1)/N
xe N |:(—1)N_1 (u + (N — 3)%)] " (_1)%(N—i—l)(N+i—2)
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o w) = [0 P W), fiol

(i.i+1) az i N 3\ .\
W, = ex o (= -2\
G p;k( (3-3)7)
xexp[ > aj’k<u—<N+l—j)}T>_k]
k>0;1<j<N k 2 4
—or +(N—i—1)/N
S R

- "
WY ) = (W ), eo].

4.2.2. Thesly case. Here we keep the same notation asgiR, case unless otherwise
stated. Set

Fii=Alaj 1< j<N—-1 keZo]®AQld  (0<i<N-1.

As in the previous subsection, we define the action of the operaters,,, e (1 < j <
N —1) onF,.

Theorem 4.7The following assignment definesTayy(sly)-module structure oLf;.
—k —k 17\ —0
a;x 1_ 1_ u— sh\ %
Ht exp|—) = “h) —(u-Zh 2
peen| -2 (o) (7)) (55 5)

H]f(u) — exp[— Z % {(u +E)’< —(u —ﬁ)k}

k>0

L L 1 \* 1 \k
T A A
k>0
ai 1_ k 3_ k
E-(u)r—>eXp|: J: {(u—l—h) +<u—h) }
/ ;O k 4 4
aji1,—k+aj-1« 1.\* ajk 1.\7*
b
o )
aj i 3.\ 1.\
Fi(u) — exp|:— & {(u + h) + <u - h) }
J ; k 4 4
Aj1,—k +aj—1—k 1.\ aj k 1\7*
IS R EUERY I IO D DI

k>0 k>0

,3[11_
xe Y [(—1)j1<u — ZF)} .
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Before investigating the vertex operators, we shall give some remarks here. Every field
in theorems 4.5-4.7 make sense as a formal serigsfime use the binomial expansion

(u+ai_l)k=Z<k.)(aﬁ)jukj ac A kel
>0 N
Now one can prove these theorems by some routine calculations. Notice that because of the
artificial choice of the action of the Heisenberg subalgebra, the bosonization of the vertex
operators in the case @Yz (gly) has such nice expression. For thé7(sly) case, as we

will see soon, we have some subtle problem to bosonize the vertex operators.

To introduce the vertex operators of type | and type I, let us fix the evaluation module
V, given in example 4.2.

Definition 4.2. The vertex operators are intertwiners of the following form:
() typel: @) : Fy — F oV,

(i) type :  wEHDGy  Fy — V, @ Fr.

Here the indices are considered modilo

Set
N-1 N-1
ey =Y oy @w,  wEw) =) w @ v w)
= j J = J j
j=0 i=0
We normalize them as
@) (AP ) Aryr) = 1
(ii) (AW @) A =1

Just as in the case @Yz (gly), our vertex operators uniquely exist and the bosonization
formulae are as follows.

Theorem 4.8 (bosonization of vertex operatolR)r 0<i < N — 1
cb(t 1+1)(u) — “m q)(l z+1)(u)n

i,i an—1,— 3_ k a _
o >n—eXp[Z & k<”+4h> }exp[— > =i )n}

k>0 k>0;1<j<N

[lh[ (I) 1h :I }[( 1)(N 1)/2(Nh) (N— 2)/2] Ay 1—(i+1)/1\]

N —i 3\ 1 . .
xglly (u— 3h), [ ( 5~ 4)h] (—1)2(N=DWN+-D
o w) = [0 P W), fiol

_— . _—
O ) = lim Wi ),
n—oo

k
ve (), = exp[_ > (” B (]zv B 411>E) ]eXp[ . a b ‘1‘7’)"}

k>0 k>0,1<j<N
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o (T [ot e, o towm o]

j=1

Zﬁ\l-‘r(N—i—l)/N

1.,
<y (ut §B), DEC

\Illii,i—t-l)(u) [\y(’ z+1)(u) e 0]
Here the functlongfj’fk(u)n, g ), (x= (I, () are defined as follows:
-
[ =" f (w430 —1-2Dh), 1<j<N
=0
1 j=0
gj*(u)n = j—1 . 2
[[¢ (w+3G—1-20h), j>0

=0

O (u) _< —N_ ‘) +Z <u+ h+Nhl> k—<u+Nﬁ+(Nz+1)E)
" 2

“k “k
+ <u _ 37NE— (NI — 1)%) _ (u _ gﬁ— Nm) }

n—

SO @, = u + 3 { + NE+ NR ™ — e+ R+ NED™
1

—k

=

I
o

+ (u— (N — Dh — Nhl)™* — (u — Nh — Nhi)™*}

1 a7 3 T
gV, = (u — N_Zy)ew—zwm (u+ 3NR)(w — 3Nh +h)
2 (u — 3NR)(u + 3Nk +h)

) ]_[1 (u + LNF + NRl)(u — 3NE — (NI — D)R) L(N-2)/NI
% NE — Nhl)(u + %Nh + (NI + DR)

-2y @+ NR) @ — (N — Dh)
(u +h)(u — NR)

g™ (), = ue

y l;[l (u + NK + Nhl)(u — (N — )i — NRl) V-2
(u+h + NRl)(u — NI — Nhl)

wherey is the Euler constant defined by

y = lim <Zi — Iogn>.

k=1
We remark that the following formulae hold:

. 1 = ), ]2
() exp[—ZZkfk*(mnvk] - [géf”(u)”)} for %= (), (Il

k>0
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(u _N- 2_) (G —u/NWT G + (@ +7)/Nk)
2 TG +u/NO(E — (u+h)/Nh)
for * = (I
(i im g (), = ore=0
e T ((u+h)/NIT (1 — u/Nh)
“TQ = u+R)/NR)T A+ u/NF)

for x = (I).

The second formula can be proved by using the famous Weierstrass formula for the Gamma
function

o0

e Tl e

n=1

Remark .For eachn € Z.o, the fields® """ (), and ("™ (u), make sense as formal
series ink. But after taking the limit: — oo, they cannot expand with respect/to They

have to be regarded as, for example, meromorphic functions. Such a feature has never
appeared in the quantum affine case [K].

Here we give a sketch of a proof of theorem 4.8 for the type | vertex operator,
considering theN = 2 case for simplicity. We also give some comments on how to
prove the general case.

We define the normal ordering : of the fields by regarding; «(k < 0), ¢* (1 < j <
N —1) as creation operators amag (k > 0), d,,(1 < j < N —1) as annihilation operators.
After some calculation, we obtain the following operator product expansion (OPE):

S ), () — (u —v+ iﬁ)z(u —v+ @2 — DR —v— 2+ Ph) |
! "l u—v—zlﬁ (u—v+(2n+z31)ﬁ)(u—v—(2n+g)ﬁ)
x 2 @Y ), H (v) :

u—v—(2n+%)ﬁ
u—v+@n+ Hh

Cl)g_i’hLl)(M)nE]_(U) — (_1)% |:(u —v4+ %E)z i| . q)(li'iJrl)(u)"El(v) -

Taking the limitn — oo, fixing the branch, we get

u—v+;3ﬁ

VW H (v) = —
PR 0) = —

Y ) H (v)

O VW) Er(v) = —(u — v+ 3B) 1 DTV W) Er(v) ¢

These are precisely the expected OPE from the intertwining property. The other OPEs can
be obtained easily and we omit them here. The normalization condition can also be checked
in a similar manner.

Next to prove the general case, first simplify the OPE, as above, to see the phase factor
and then calculate the limit using the infinite product form of the Gamma function. In this
way we can prove that our formulae give the desired OPE and the normalization.
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5. Discussion

In this paper, we have constructed the Yangian do@hfg(g) with a central extension for

g = gly.sly. We also presented Drinfel'd generators which are defined in [Dr3]. Using these
generators, we studied both finite- and infinite-dimensional representations. We presented a
conjecture for the irreducible finite-dimensional representations and gave some examples to
check the validity of them. The bosonization of the level 1 modules and the vertex operators
were also given.

It seems that the Yangian douliizY;(g) for another type of simple finite-dimensional
Lie algebrag can be defined by corollary 3.4 withoit*(x) where A = (a;;) is now the
corresponding Cartan matrix. Suppose for a moment that this is true. Then the rest of
section 3 also holds without any change. In particular, whéena simply laced algebra, we
can generalize theorem 4.7 by a simple modification whose quantum affine version is treated
in [FJ]. There are several other problems which we have already mentioned in our previous
paper [IK]. The relation between the quantum affine algelyéy) and the Yangian double
DYx(g) is quite mysterious.

For physical applications, it is important to investigate the infinite-dimensional
representation theory dbYz(g). In this paper, we give the bosonization of the level 1
module 7; and the vertex operators among them. As we have seen in theorem 4.8, the
Fourier coefficients of the vertex operators loose sense unlike to the quantum affine case
[IM, K]. This means that we have to consider not the Fourier components but the currents
themselves. Namely we have to consider a new class of the algebra and their representation
theory to investigate further. It is also interesting to see the connection between the formulae
in [Lu] and ours.
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Appendix A. Review of quantum groups

In this appendix, we recall some facts about univef®and L-operator.

A.l. UniversalR

Let R be the universak-matrix [Drl] for U, (sly). For the definition and the properties of
universal R-matrix, see [Drl, J].
We slightly modify R to defineL-operators. Define

’ 1 1
Rt = qf?(6®d+d®c)o,(Rfl)qfi(c®d+d®c)
R~ = q%(c®d+d®c)Rq L(c®d+d®c)

R*¥z) = ¢ @IdR*Tz?®id).

Hereo stands for the flip of tensor component&: ®b) = b®a. We remark thaR *(z) are
formal power series in™. The properties of universat-matrix can be readily translated
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in terms of R'*. Forx € U, (sly), we write A(x) = x3) ® xz. Then

R*(2) (Adlg %) x) @ Ad(g*2 %))

— (Ad(zdf%czd)x(z) ® Ad(qu%Cld)x(l)> R*(2).

Herec; =c® 1 andca = 1® ¢ as in section 3.
The Yang—Baxter equation takes the form

Ri5(z/w)RE(2gT)R5w) = Rag(w)Ri5(2g TR (z/w)
R15(z/wqg ) RE(@) Rog(w) = Rog(w)R5(2)Rh(z/wg).

For completeness we give the transformation propertieR 6funder the coproduca, the
counite and the antipode.

(A ®id) R (2) = Ri5(zq**)RF5(2g72)

(id ®A) R*(2) = Ri5(zq T2 Ri3(24*2%)

(e ®IDR*(2) = (id @R *(2) =1
(S®IR*(2) = (d®SHR*(2) = R* (@)™

A.2. L-operators

Let now my : Uq(s:[,v)/ — End(V) be a finite-dimensional representation, Whﬁﬁﬁ[N)’
signifies the subalgebra df, (sly) with g¢ being dropped. The evaluation representation
wy, associated wittV is defined by

v, (x) = 7y (z9xz79) Vox € Uy(sly)'.
Introduce theL-operators
L*(2) = Ly (2) = (mv. ® id) R™*.

Taking the image of the Yang—Baxter equation ®F in End(V,) ® End(V,,) ® id, we find
the following RLL relations:

REG/w) L@ L w) = LE(w)L* (2) Rz /w)

Rz~ 2/w) L (L~ (w) = L~ () L* () Riy(g°2/w)
where we set

R*(z/w) = (v, ® 7v,) R*.
Introducing the matrix unit&;; let us define the entrieB?;(z) by

L*(x) =) E; ® L)
In these terms, the Hopf algebra structure reads as follows:

A(LE@) = Y Li@ =) @ L@ 2)
k

& (L;‘]:(Z)) = 8,‘]

S(L*(2)) = ("L*@) "

SHLAE @) = (L*@) .
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In the last two lines we set

S(L* () = Z Ei®S (L,-j;(z))

HLE@) =Y Eye s (LE@).

Let U* be Hopf subalgebras (ﬂq(s[,v) generated b)qi%‘f and the Fourier components of
L*(z). The subalgebrd/~ is the dual Hopf algebra off = with opposite comultiplication
and the Hopf pairing betweeli* has the explicit description as follows:

(L™ (2), L™ (w)) = Z<L+(Z) Ly(w)E;; ® Ey = RT(z/w).
We remark that all of these formulae motivate our choicd &fu)-matrix.

Appendix B. Several formulae for T-matrices

In this appendix, we collect some formulae which seem well known to the specialists [Ta].
Here we denotd («) for T*(u) for simplicity.

B.1. The quantum determinant of tliematrix

In this subappendix, we give a brief review on quantum determinant for convenience. See
[MNO, KS] for further information.

B.1.1. Quantum minor. Let V be a rankN A-free module and® € EndV ® V) be a
permutation operatctPv @ w = w ® v (v, w € V). Let us fix the normalization of Yang's
R-matrix as

h
Ru)=1+—-P cEndV @ V).
u
Recall thatT (u) enjoy the following commutation relations:

1 2 2 1
Ru—v)TW)TW) =T@)Tw)Rw —v).
Suppose the comultiplication df(«) is given by

N
A(T (n)) = T(u)®T(u) or equivalently At () = Ztik(u) ® trj (u).
k=1

For simplicity, setR; ; = R; j(u; — u;) and
R(I/tl, Uz, -+, up) = (Rpfl,p)(Rpfszp*Z,pfl) to (Rl,pRl,pfl o Rl,Z)
where the meaning of the lower indices are the same as in section 3.
Lemma B.1.
1 2 p V4 2 1
R(uy, uz, -, up)Tw)T W2) - - T(wp) = T(up)---Tw2)T w1 R(ug, uz, -~ -, up).

Let A[S,] be the group algebra of theth symmetric group ovesd which naturally
acts onV®” and set

1
a, = Z (sgno)o € A[S,] Ap=—
0ecG, p:

Lemma B.2 ([MNO]).Foru; —u;»1=—h, 1<Vi<p

ap.

R(uy, uz,---u,) = ap.
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One can prove this lemma by induction pn Combining these two lemmas, we obtain
the following.

Lemma B.3.

1 p—1_\2 p—3_ P p—1_
A,,T(u—2h>T(u—2h>-~-T<u+2h
P p—1_ 2 p—3\1 p—1_
s T3 A 73 e 7 ),

Setp = N in the above lemma. Since théth exterior power/\N V is of rank 1 and
Ay stabilizes/\N V, the left hand side of the above equationgsalay x Ay.

Definition B.1 (quantum determinant).
N N-1_ 2 N—-3\1 N-1_
g-det.T(u)Ay = T(u + 2h> T(u - 2h)T<u — 2h)AN.

Explicitly, we have

Proposition B.4.

N-—1_ N —3_
qg-detT (u) = Z (sgna)tgum(u — h>t,,(2),2(u - h)

JEGN

N-—-1_
"'ta(N),N M+Th

N-1_ N—-3_
= Z (sgno)ty o | u + Th 20| u+ Th

UEGN

N-—-1_
c o INo(N) (Lt — 2/’!)

Next we explain some facts about quantum minors of Thmatrix. For two index
subsetsl, J Cc {1,2--- N} with #I =#J = p, 1 < p < N (the cardinality), set

Try(w) = (t;j(u))ier, jes-
By the definition ofT (), we obtain the following commutation relations:

1 2 2 1
Ry(u —v)Trs)T1y(0) =T1s(W)Trs @R, —v)

h
R,(u)=1+~-P cEndV, ® V,)
u

whereV, is a rankp A-free module. Thus by an argument similar to that above, we get
the explicit expression of quantum mingrdetT;, («) as follows. Set

I={i17i27'.'7i[)} J={j15j25“'ajp}-



4616 K lohara

Lemma B.5.

-1 -3
q-detT”(u) = Z (sgna)t,-a(l),jl (M — pzh)tig(z),jz (u — pzh>

e,

-1
s ti(r(N)vjN (M + L 2 h)

p—1_ p—3_
= Z (Sgna)tli»}}r(l) u+ Th lig joy | 4 + 2 h

0e6,

p—1_
i (” - 2h>~

The following corollary is the immediate consequence of the above expression.
Corollary B.6. For eacho € &,
qg-detTyo ;(u) = g-detT; - (u) = (sgno) g-detT;; (u)
where we sef” = {i;-11), io-12), - -+ » io-1(py} @Nd similarly forJe.
Using this corollary, one can calculate the coproduct of quantum minors as follows.

Corollary B.7.
A(g-detT;; () =y _ g-detTx (u) ® g-detTy  (u)
K

where the summation runs over all of the ordered sukiset {k1, k2, - - -, k,} C S satisfying
l<k1<k2<~-'<kP<N.

B.1.2. Laplace expansion of tte-matrix. Let {e;}1<;<y be an.A-free basis ofV and
S =1{12,---, N} be the index set. For each ordered index subset{iy, i»,---,i,} C S,
we definee; an element ofA\” V as

ey = Z (sgno)ei,,, ® €ip ® - ® ¢, -

0eB,

Note that the sefe;}1<i,<i,<..<i,<n Provides a basis of\” V. Let E;, be an element of
End(\” V) satisfyingE;jex = 8,;xe;. Set

—1\ 2 —3.\1 1
T,(u) = 7’3<u+ pzh) T(u - pzh)T(u - pzh>AP.

By lemma B.3, we see thdf,(«) is the element of Engl\” V). More precisely, we have
the following lemma.

Lemma B.8.

T)(u)e; = Z(q-detT,,(u))e, or equivalently  T,(u) = Z(q-detT”(u))E”.
1 1,J

One can prove this lemma by using corollary B.6.

Fix p,q € Z-o such thatp + ¢ = N. Regarding bothA\" vV and A’V @ A’V
as subspaces oF®", one can easily express e /\NV by linear combinations of
er®e; € N"Ve AV as follows.
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Lemma B.9.
es = Z (—1)2PP Dt @ e,
TUJ=S:#I=p
where|I| = Zj’.’:lij for I ={iy, iz, -+, ip}.

Combining lemma B.8 and lemma B.9, we obtain the Laplace expansion &fthatrix.
Proposition B.10 (quantum Laplace expansioRpr eachl, J C S with #I = p,#J = q,
we have

(G-detT @i sbinge = 3 (—DIHIK gdetTyy (u + qn)
KUL=S;#K=p 2

x g-detT; <u — gﬁ) .
Specializing top = 1 or g = 1 we obtain the quantum minor expansion of hanatrix.
Namely, sets® = §\ {i} and
Tu) =G ey ij) = (=1 g-detTso so ).
Then we get
Corollary B.11.

T N-1nF LY o L\er N=10)  (-detrwnr
<u+2> (u—z)— <u+2> <u—2>—(q ()

where the superscriptdenotes the transpose of the matrix.

B.2. Gauss decomposition of tiiematrix

In this subappendix, we explicitly construct the Gauss decompositidh(of in terms of
its quantum minors. Let

! 0 ka(w) 0
Sa.1(w)
T(u) =
Snaw) Syn-1(m) 1 0 kn (u)
1 e12(m) ey n(u)
X
en—1,n(u)
0 1
be the Gauss decomposition Bfu) = (¢;;(u)).
Lemma B.12.

> fukiwyer ju) + ki(we; jw) i < j

I<i

) = § 2 fuki@en ) + ki) i=j

I<i

3 fuki@e ;@) + fijwki@) Q> j.

I<j
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For 1< p,q < N, let us definel, , (1) submatrices of (x) as follows.
Definition B.2.(i)) p = g:
Tp.p(u) = (1 j(u))

1<, j<p
(i) p <gq:
fam) ...t p1(u) t1,4(u)
Tpq(u) = ’
tp—l,l(”) e tp—l.p—l(u) tp—l.q(“)
tpa(u) ..ty p-1() )
(i) p > q:
tiam) ... tig-1(u) t1,4(u)
T, ) =
qul,l(u) s tqfl,qfl(u) tqfl,q(u)
1, 1(u) cee tpg-1(u) 14 (1)

Using lemma B.12, we can explicitly describe the Gauss decompositidp gi:) as
follows.

Lemma B.13(i) p = g:

T, ) = fz,ll(u)
fp,l(u) fp,pfl(u) 1 0 kp(”)
1 e1p(m) - e1p(u)
X
epfl,p(u)
0 1
(i) p<gq:
1 0 0
f21(u)
Tpq(u) = : ) )
fr—11(w) -+ fp_1p-—2(u) 1
FoaQU) oo frpa() 1
k]_(l/l) 0
X
kp—l(u)

0 ky(u)ep q(ut)
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1 e1o(u)
X
0
0
(i) p > gq:
1
fa.1(u)
Tpq(u) = :
Sa-11(u)
fpﬂl(u) .......
ka(u)
X
0
1 e12(u)
X
0
0
Let

e1,p—1(u) e1q(u)
ep—Z.p—l(u)
1 ep—1,4 W)
1
0 0

kq—l(u)
fp,q (u)kq (u)

e1,4-1(u) e14(u)

eq72.qfl(u)
1 €414 (M)
1

T, () =F,u)Kp s E, 4 (1)
be the Gauss decomposition @} ,(u) and setr = min{p, g}.

component of the formula

Fpo) ™ =K, ,)E, )T, ()"

on both sides together with lemma B.13, we obtain the following.

Lemma B.14.
1
(i) kp(u) = e ——a—
! [Tp,p(“)_l]p,p
(ii) epg) = [T, () S S
P " pp [Tp-q(”)il]p,p
(ii) Frgu) = [Tyq@) ],

[T”’q (u)il]q,q

where[T,,,q(u)*l]a,b signifies the(a, b)) component of the matrif, , (u)~*.

4619
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Set
A, g ) = qg-det.T, ,(u) A,(u) = g-det.T, ,(u).

Since we can express the matrix components7pf («)~! by their quantum minors
lemma B.11, combining these with lemma B.14, we obtain the following results.

Theorem B.15.

— -1

0 k@ = 8, (1= L5 7) 8,01 (u = 27)

" —1\* —1_

(i) epqg(u) = A, <u — pzh> Apg (u — pzh)

—1_ -1\

(i) Fral) = Dpg (u - ‘12/1) A, <u - qzh) .
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