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Bosonic representations of Yangian doubleDYh̄(g) with
g = glN , slN
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Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan

Received 26 March 1996

Abstract. On the basis of the ‘RT T = T T R’ formalism, we introduce the quantum double
of the YangianYh̄(g) for g = glN , slN with a central extension. The Gauss decomposition of
the T-matrices gives us the so-called Drinfel’d generators. Using these generators, we present
some examples of both finite- and infinite-dimensional representations that are quite natural
deformations of their corresponding affine counterpart.

1. Introduction

In the last few decades, the quantum inverse scattering method (QISM), initiated by Faddeev
and co-workers, has been studied extensively and has produced rich structures in both
physics and mathematics. The quantum algebras called the quantized universal enveloping
algebraUq(g) and the YangianYh̄(g) are some of the most important fruits inspired by
the QISM. They have unexpected connections with such, at first sight unrelated, parts
of mathematics as the construction of knot invariants, the geometric interpretation of a
certain class of special functions and the representation theory of algebraic groups in the
characteristicp. Of course they also have many nice applications in theoretical physics
such as quantum field theory and statistical mechanics. As is well known,Uq(g) describes
some features of conformal field theory. One can solve lattice models, like the spin-1

2
XXZ model, as an application of the representation theory ofUq(ŝl2). The quantum affine
algebraUq(ŝl2) is theq-deformation of the enveloping algebraU(ŝl2). The YangianYh̄(g)

is also related to conformal field theory. Lattice models such as the Haldane–Shastry
model are known to possessYh̄(sl2)-symmetry. The YangianYh̄(sl2) is the h̄-deformation
of the enveloping algebraU(sl2[t ]). The quantum double [Dr1] of theYh̄(g), which we
shall refer to as Yangian doubleDYh̄(g), seems to play important roles in massive field
theory [BL, LS, S]. In these works, the Yangian doubleDYh̄(g) is the h̄-deformation of
the universal enveloping algebra of the loop algebrag[t, t−1] for g = sl2, without central
extension. In view of the lattice models, like the spin-1

2 XXX model of infinite chains, it
seems necessary to construct the Yangian doubleDYh̄(g) with a central extension. In our
previous paper [IK], we defined the Yangian doubleDYh̄(g) with a central extension for
g = gl2 or sl2. The present paper is a higher rank generalization of it. Our attempt here is
to explain the background of the construction and to consider the representation theory. We
also summarize some formulae related to our calculations which seem well known to the
specialists but have never appeared in the literature. The main topics treated in this paper
are as follows.

† JSPS Research Fellow.
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1. Yangian double

The Yangian doubleDYh̄(g) has been introduced into the literature in terms of Chevalley
generators [LS], theT ±-matrix [BL] for g = sl2 and Drinfel’d generators [KT] for a simple
finite-dimensional Lie algebrag. Here we constructDYh̄(g) for g = glN, slN by means of
the QISM [BL, RS, RTF]. Namely, letR(u) be the YangR-matrix. The algebraDYh̄(glN)

is defined through quadratic relations of the form

R(u − v)(T ±(u) ⊗ id)(id ⊗T ±(v)) = (id ⊗T ±(v))(T ±(u) ⊗ id)R(u − v)

R(u − v − 1
2h̄c)(T +(u) ⊗ id)(id ⊗T −(v)) = (id ⊗T −(v))(T +(u) ⊗ id)R(u − v + 1

2h̄c)

wherec is a central element ofDYh̄(glN). The T ±-matricesT ±(u) = (t±ij (u))16i,j6N are
expanded as

t+ij (u) = δij − h̄
∑
k>0

tkij u
−k−1 t−ij (u) = δij + h̄

∑
k<0

tkij u
−k−1.

Just as in the case ofUq(ĝln) [DF], we consider the Gauss decomposition of theT ±-
matrix (theorem 3.2) and obtain the Drinfel’d generators ofDYh̄(glN) (theorem 3.3). We
defineDYh̄(slN) as a certain subalgebra ofDYh̄(glN) and show that our Drinfel’d generators
recover the results obtained in [KT] at level 0 (corollary 3.5). We also introduce another
subalgebra ofDYh̄(glN) which we call the Heisenberg subalgebra.

2. Representation theory

Here we investigate several examples. The main tool here is the Drinfel’d generators.

Finite-dimensional representations.At c = 0, the Heisenberg subalgebra ofDYh̄(glN)

becomes the centre of it. So we will concentrate onDYh̄(slN) case without loss of generality.
From the commutation relations ofDYh̄(g) at level 0 (corollary 3.5), we expect that the
analogue of the classification theorem of irreducible finite-dimensional representations holds
just as in the case of YangianYh̄(g) [Dr3]. We present some examples which support our
conjecture. All of them are ones that we call evaluation modules.

Infinite-dimensional representations.Unfortunately we have no proper definition of
highest-weight modules due to the lack of the triangular decomposition ofDYh̄(g). Here
we realize level 1DYh̄(glN)-modules on the boson Fock spaceFi,s (0 6 i 6 N − 1, s ∈ C)
(theorem 4.5). LetVu be anN -dimensional evaluation modules ofDYh̄(glN). The vertex
operators are intertwiners of the form

8(i,i+1)(u) : Fi+1,s −→ Fi,s−1 ⊗ Vu

9(i,i+1)(u) : Fi+1,s −→ Vu ⊗ Fi,s−1.

We also give the bosonization of the vertex operators (theorem 4.6). For theDYh̄(slN) case,
we construct level 1 modules on the boson Fock spaceFi (0 6 i 6 N − 1) (theorem 4.7)
whose quantum affine versions are obtained in [FJ]. We should mention that every field
defined above makes sense as a formal series in ¯h. Moreover, we also construct vertex
operators forDYh̄(slN), in which case the Fourier components lose their meaning (theorem
4.8). More precisely, those formulae makes sense only as an asymptotic series.

The text is organized as follows. In section 2 we recall the definition of YangianYh̄(g).
We also mention the other set of generators and the isomorphism between them. The theory
of finite-dimensionalYh̄(g)-modules is also reviewed and one example is given. In section 3
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we defineDYh̄(g) for g = glN, slN . We rewrite the commutation relations in terms of
Drinfel’d generators. In section 4 we present a conjecture for finite-dimensionalDYh̄(slN)-
modules together with a few examples. As for infinite-dimensional representations, we
construct level 1 modules and vertex operators directly via bosonization. Section 5 contains
discussions and remarks. For the reader’s convenience, we also include two appendices. In
appendix A we give a brief review of quantum groups, in particular the universalR- and
L-operators. In appendix B we collect some formulae forT -matrices.

Let us mention that the author got two papers [K1, K2] when he was preparing this
paper. The central extension ofDYh̄(sl2) is introduced in [K1] which has some overlap
with [IK]. The bosonizations of level 1DYh̄(sl2)-module and the vertex operators among
them are obtained in [K2]. Here we introduce the Yangian doubleDYh̄(g) for g = glN, slN
with a centre and obtain the bosonization of level 1DYh̄(g)-module and the vertex operators
among them.

2. Review of the YangianYh̄(g)

In this section we collect some known facts about Yangians, including representation theory.

2.1. YangianYh̄(g)

Here we present two different realizations ofYh̄(g) for a simple finite-dimensional Lie
algebrag. In addition, for g = slN , another realization called theT -matrix is known
[Dr1, Dr2], and we make some comments on it.

SetA = C[[h̄]]. Let g be a simple finite-dimensional Lie algebra and{α1, α2, · · · , αn}
the set of simple roots. Fix a standard non-degenerate symmetric invariant bilinear form
(·, ·) on g. For each positive rootα of g, choose root vectorsx±

α in ±α root spaces such
that (x+

α , x−
α ) = 1 and sethα = [x+

α , x−
α ]. We denote the Cartan matrix ofg by A = (aij ).

Let {Ip} be any orthonormal basis ofg with respect to the inner product(·, ·).
Definition 2.1 ([Dr3]). The YangianYh̄(g) is a topological Hopf algebra overA generated
by g and elementsJ (x), x ∈ g, with relations

J (ax + by) = aJ (x) + bJ (y) a, b ∈ A [x, J (y)] = J ([x, y])

[J (x), J ([y, z])] + [J (y), J ([z, x])] + [J (z), J ([x, y])]

= h̄2
∑
p,q,r

([x, Ip], [[y, Iq ], [z, Ir ]]){Ip, Iq, Ir}

[[J (x), J (y)], [z, J (w)]] + [[J (z), J (w)], [x, J (y)]]

= h̄2
∑
p,q,r

(
([x, Ip], [[y, Iq ], [[z, w], Ir ]])

+ ([z, Ip], [[w, Iq ], [[x, y], Ir ]])
) {Ip, Ir , J (Ir)}

where{·, ·, ·} denotes the symmetrization

{x1, x2, x3} = 1

24

∑
σ∈S3

xσ(1)xσ(2)xσ(3).

The comultiplication ofYh̄(g) is given by

1(x) = x ⊗ 1 + 1 ⊗ x

1(J (x)) = J (x) ⊗ 1 + 1 ⊗ J (x) + 1
2h̄[x ⊗ 1, �]
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where� stands for the Casimir element ofg ⊗ g.

Drinfel’d [Dr3] has shown that there are so-called Drinfel’d generators ofYh̄(g). To be
precise, the following theorem holds.

Theorem 2.1 ([Dr3]).The YangianYh̄(g) is isomorphic to the algebra generated by the
elements{ξ±

ik , κik|1 6 i 6 n , k ∈ Z>0} subject to the relations

[κik, κjl ] = 0 [κi0, ξ
±
j l ] = ±(αi, αj )ξ

±
j l [ξ+

ik , ξ
−
j l ] = δij κik+l

[κik+1, ξ
±
j l ] − [κik, ξ

±
j l+1] = ± 1

2(αi, αj )h̄[κik, ξ
±
j l ]+

[ξ±
ik+1, ξ

±
j l ] − [ξ±

ik , ξ
±
j l+1] = ± 1

2(αi, αj )h̄[ξ±
ik , ξ

±
j l ]+∑

σ∈Sm

[ξ±
ikσ(1)

, [· · · , [ξ±
ikσ(m)

, ξ±
j l ] = 0 for i 6= j

where we setm = 1 − aij and [x, y]+ = xy + yx for x, y ∈ Yh̄(g). The isomorphismφ

between two presentations is given by

φ(hi) = κi0 φ(x±
i ) = ξ±

i0

φ(J (hi)) = κi1 + h̄φ(vi) φ(J (x±
i )) = ξ±

i1 + h̄φ(w±
i )

where we sethi = hαi
, x±

i = x±
αi

and

vi = 1

4

∑
α�0

(α, αi)(x
+
α x−

α + x−
α x+

α ) − 1

2
hi

2

w±
i = ±1

4

∑
α�0

{[x±
i , x±

α ]x∓
α + x∓

α [x±
i , x±

α ]} − 1

4
(x±

i hi + hix
±
i ).

For g = slN , we have another realization calledT -matrix [Dr2, Dr3] as follows.
Let V be a rankN A-free module andP ∈ End(V ⊗ V ) be a permutation operator

Pv ⊗ w = w ⊗ v (v, w ∈ V ). Consider Yang’sR-matrix normalized as

R(u) = 1

u + h̄
(uI + h̄P) ∈ End(V ⊗ V ). (1)

whereh̄ is expanded in positive powers. ThisR-matrix satisfies the following properties:

Yang–Baxter equation:

R12(u − v)R13(u)R23(v) = R23(v)R13(u)R12(u − v)

Unitarity:

R12(u)R21(−u) = id .

Here, if R(u) = ∑
ai ⊗ bi with ai, bi ∈ End(V ), then R21(u) = ∑

bi ⊗ ai, R13(u) =∑
ai ⊗ 1 ⊗ bi etc.

Theorem 2.2 ([Dr3]).The YangianYh̄(slN) is isomorphic to the algebra with generators
{tki,j |1 6 i, j 6 N , k ∈ Z>0} and defining relations

R(u − v)
1
T (u)

2
T (v) = 2

T (v)
1
T (u)R(u − v) q-detT (u) = 1.
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Here

T (u) = (tij (u))16i,j6N tij (u) = δij − h̄
∑

k∈Z>0

tkij u
−k−1

1
T (u) = T (u) ⊗ id

2
T (u) = id ⊗T (u)

andq-detT (u) is defined in proposition B.4. The comultiplication is given by

1(tij (u)) =
N∑

k=1

tkj (u) ⊗ tik(u).

Roughly speaking, the isomorphism between the algebra generated by the Drinfel’d
generators and the algebra presented above is given by the Gauss decomposition of the
T -matrix (see section 3 and appendix B.2 for details).

2.2. Representation theory ofYh̄(g)

In this subsection, we give a brief review on finite-dimensional representations ofYh̄(g).
See [CP1, CP2] for detail.

Let h = {hi,r}16i6n,r∈Z>0 be a subset ofA. A Yh̄(g)-moduleV is called thehighest-
weight module with highest weighth if there exits a unique, up to scalar, non-zero vector
v ∈ V such thatV is generated byv and

κi,rv = hi,rv ξ+
i,rv = 0 1 6 ∀ i 6 n ∀ r ∈ Z>0.

It is known that every irreducible finite-dimensionalYh̄(g)-module V is highest-weight
module. Let us denote the irreducible highest weightYh̄(g)-module with highest weighth
by V (h). The criterion of the finite-dimensionality ofV (h) is known.

Theorem 2.3 ([Dr3]).The irreducibleYh̄(g)-module V (h) of highest weighth is finite
dimensional if and only if there exist monic polynomialsPi(v) ∈ A[v] 1 6 i 6 n such that

Pi(v + 1
2(αi, αi)h̄)

Pi(v)
= 1 + h̄

∞∑
r=0

hi,rv
−r−1

in the sense that the right-hand side is the Laurent expansion of the left-hand side about
v = ∞.

The polynomialsPi(v) in this theorem are called Drinfel’d polynomials.
The preceding theorem suggests the following definition.

Definition 2.2 ([CP2]).We say that an irreducible finite-dimensionalYh̄(g)-module is
fundamentalif its Drinfel’d polynomials are given by

Pj (v) =
{

v − u j = i

1 j 6= i

for some 16 i 6 n.

Using the fact that the Drinfel’d polynomials of the tensor product of two highest-weight
modules are the product of the Drinfel’d polynomials of two highest-weight modules, one
proves the following.

Theorem 2.4 ([CP2]).Every irreducible finite-dimensionalYh̄(g)-module is isomorphic to a
subquotient of a tensor product of fundamental representations.
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Here we present an example of fundamental representation ofYh̄(slN) and the more
general representations containing the first example.

Example 2.1.Set

Vu = V ⊗A A[u] V = ⊕N−1
j=0 Awj .

Yh̄(slN)-module structure onVu is defined via the following actions:

(i) ξ+
i,rwi =

(
u − N − 1 − i

2
h̄

)r

wi−1 ξ+
i,rwj = 0 j 6= i

(ii) ξ−
i,rwi−1 =

(
u − N − 1 − i

2
h̄

)r

wi ξ−
i,rwj = 0 j 6= i − 1

(iii) κi,rwi−1 =
(

u − N − 1 − i

2
h̄

)r

wi−1

κi,rwi = −
(

u − N − 1 − i

2
h̄

)r

wi κi,rwj = 0 j 6= i, i − 1.

Note that one can regardu as either an indeterminate or an element ofA. In the latter case,
the Drinfel’d polynomials ofVu are given by

P1(v) = v −
(

u − N − 2

2
h̄

)
Pi(v) = 1 i 6= 1.

Let us fixg to be a simple finite-dimensional Lie algebra of classical type and normalize
the invariant bilinear form by the condition(β, β) = 2 (β: long root). The fundamental
weights3i(1 6 i 6 rankg) are chosen so as to satisfy

2
(3i, αj )

(αj , αj )
= δi,j .

Example 2.2.Let V (3) be the irreducible highest weightg-module with highest weight3.
Especially when3 is of the formm3i with m being positive integer, it is known from
[KR] if g is of typeAl (Bl, Cl, Dl) and 16 i 6 l (i = 1, i = l, i = 1, l −1, l) thenV (m3i)

can be made intoYh̄(g)-module. LetVa(m3i) be suchYh̄(g)-module satisfying

(i) Va(m3i) ∼= V (m3i) as ag-module

(ii) J (x)|Va(m3i) = ax|Va(m3i) ∀ x ∈ g.

The Drinfel’d polynomials ofVa(m3i) are given by

Pi(v) =
m∏

k=1

{
u − (

a − (
1
4g − j + 1

2m
)
h̄
)}

Pj (v) = 1 j 6= i

whereg is the dual Coxeter number.

3. The algebraDYh̄(glN )

Here we define a central extension ofDYh̄(g) for g = glN, slN following the method of
[RS].
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3.1. Yangian doubleDYh̄(glN)

Let us choose Yang’sR-matrix as in (1).

Definition 3.1.DYh̄(glN) is a topological Hopf algebra overA generated by{tkij |1 6 i, j 6
N , k ∈ Z} andc. In terms of matrix generating series

T ±(u) = (t±ij (u))16i,j6N

t+ij (u) = δij − h̄
∑

k∈Z>0

tkij u
−k−1 t−ij (u) = δij + h̄

∑
k∈Z<0

tkij u
−k−1

the defining relations are given as follows:

[T ±(u), c] = 0

R(u − v)
1
T

±(u)
2
T

±(v) = 2
T

±(v)
1
T

±(u)R(u − v)

R(u− − v+)
1
T

+(u)
2
T

−(v) = 2
T

−(v)
1
T

+(u)R(u+ − v−).

Here
1
T (u) = T (u) ⊗ id

2
T (u) = id ⊗T (u)

u± = u ± 1
4h̄c and similarly forv. Its coalgebra structure is defined as

1(t±ij (u)) =
N∑

k=1

t±kj (u ± 1
4h̄c2) ⊗ t±ik (u ∓ 1

4h̄c1)

ε(T ±(u)) = I S(tT ±(u)) = [t T ±(u)]−1

1(c) = c ⊗ 1 + 1 ⊗ c ε(c) = 0 S(c) = −c

wherec1 = c ⊗ 1 andc2 = 1 ⊗ c.

Note that the subalgebra generated by{tkij |1 6 i, j 6 N , k ∈ Z>0} is Yh̄(glN) [Dr2, Dr3]
and the algebraDYh̄(glN) is the quantum double ofYh̄(glN). Let us define the pairing〈·, ·〉
betweenT ±(u) as follows (cf [RTF]).

〈T +(u), T −(v)〉 :=
∑
i,j,k,l

〈t+ij (u), t−kl (v)〉Eij ⊗ Ekl = R(u − v).

It seems that the following theorem is well known to the specialists.

Theorem 3.1.The pairing〈·, ·〉 gives the Hopf pairing.

The crucial point of the theorem is its non-degeneracy. We could check the non-
degeneracy forN = 2 directly. For the motivation of our choice, see appendix A.

3.2. Drinfel’d generators

We introduce the Drinfel’d generators ofDYh̄(glN) exactly in the same way as in [DF].
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Theorem 3.2.T ±(u) have the following unique decompositions:

T ±(u) =


1 0

f ±
2,1(u)

. . .

. . .
. . .

f ±
N,1(u) f ±

N,N−1(u) 1




k±
1 (u) 0

. . .

. . .

0 k±
N(u)



×


1 e±

1,2(u) e±
1,N (u)

. . .
. . .

. . . e±
N−1,N (u)

0 1

 .

To prove this theorem, we have only to show that each componentf ±
p,q(u), k±

p (u), e±
p,q(u)

is well-defined element ofDYh̄(glN)[[u∓1]]. From the explicit formulae of these elements in
terms of quantum minors, given in appendix B.2, it immediately follows since our algebra
DYh̄(glN) is h̄-adically completed. Set

X−
i (u) = f +

i+1,i (u+) − f −
i+1,i (u−)

X+
i (u) = e+

i,i+1(u−) − e−
i,i+1(u+).

They satisfy the following commutation relations.

Theorem 3.3.

k±
i (u)k±

j (v) = k±
j (v)k±

i (u) k+
i (u)k−

i (v) = k−
i (v)k+

i (u)

u∓ − v±
u∓ − v± + h̄

k∓
i (v)−1k±

j (u) = u± − v∓
u± − v∓ + h̄

k±
j (u)k∓

i (v)−1 i > j


k±
i (u)−1X+

i (v)k±
i (u) = u± − v + h̄

u± − v
X+

i (v)

k±
i (u)X−

i (v)k±
i (u)−1 = u∓ − v + h̄

u∓ − v
X−

i (v)


k±
i+1(u)−1X+

i (v)k±
i+1(u) = u± − v − h̄

u± − v
X+

i (v)

k±
i+1(u)X−

i (v)k±
i+1(u)−1 = u∓ − v − h̄

u∓ − v
X−

i (v)

k±
j (u)−1X+

i (v)k±
j (u) = X+

i (v) k±
j (u)X−

i (v)k±
j (u)−1 = X−

i (v) otherwise

(u − v ∓ h̄)X±
i (u)X±

i (v) = (u − v ± h̄)X±
i (v)X±

i (u)

(u − v + h̄)X+
i (u)X+

i+1(v) = (u − v)X+
i+1(v)X+

i (u)

(u − v)X−
i (u)X−

i+1(v) = (u − v + h̄)X−
i+1(v)X−

i (u)

X±
i (u1)X

±
i (u2)X

±
j (v) − 2X±

i (u1)X
±
j (v)X±

i (u2) + X±
j (v)X±

i (u1)X
±
i (u2)

+{u1 ↔ u2} = 0 |i − j | = 1
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X±
i (u)X±

j (v) = X±
j (v)X±

i (u) |i − j | > 1

[X+
i (u), X−

j (v)] = h̄δij

{
δ(u− − v+)k+

i+1(u−)k+
i (u−)−1 − δ(u+ − v−)k−

i+1(v−)k−
i (v−)−1

}
.

Hereδ(u − v) = ∑
k∈Z u−k−1vk is a delta function.

One can prove the above theorem in exactly the same way as in [DF] for theUq(ĝln)
case.

3.3. Two subalgebras

To decomposeDYh̄(glN) into two subalgebrasDYh̄(slN) and a Heisenberg subalgebra, we
introduce the following currents:

H±
i (u) = k±

i+1(u + 1
2h̄i)k±

i (u + 1
2h̄i)−1 K±(u) =

N∏
i=1

k±
i

(
u +

(
i − N + 1

2

)
h̄

)

Ei(u) = 1

h̄
X+

i (u + 1
2h̄i) Fi(u) = 1

h̄
X−

i (u + 1
2h̄i).

We defineDYh̄(slN) to be the subalgebra ofDYh̄(glN) generated byH±
i (u), Ei(u), Fi(u)

and c. A Heisenberg subalgebra ofDYh̄(glN) generated byK±(u) commute with all of
the elements ofDYh̄(slN). In fact we see that the formulaK±(u) = q-det.T ±(u) holds
as a consequence of theorem B.15. (See appendix B.2 for the definition ofq-det.T ±(u).)
In terms of these generators, the above commutation relations can be rephrased as follows.
Let A = (aij ) be the Cartan matrix of the Lie algebraslN .

Corollary 3.4.

[H±
i (u), H±

j (v)] = 0

(u∓ − v± + h̄Bij )(u± − v∓ − h̄Bij )H
±
i (u)H∓

j (v)

= (u∓ − v± − h̄Bij )(u± − v∓ + h̄Bij )H
∓
j (v)H±

i (u)

[K±(u), K±(v)] = 0 f (u− − v+)K+(u)K−(v) = K−(v)K+(u)f (u+ − v−)
H±

i (u)−1Ej(v)H±
i (u) = u± − v − h̄Bij

u± − v + h̄Bij

Ej (v)

H±
i (u)Fj (v)H±

i (u)−1 = u∓ − v − h̄Bij

u∓ − v + h̄Bij

Fj (v)

[Kσ(u), H±
i (v)] = [Kσ(u), Ei(v)] = [Kσ(u), Fi(v)] = 0 ∀ σ = ± ∀ i

(u − v − h̄Bij )Ei(u)Ej (v) = (u − v + h̄Bij )Ej (v)Ei(u)

(u − v + h̄Bij )Fi(u)Fj (v) = (u − v − h̄Bij )Fj (v)Fi(u)∑
σ∈Sm

[Fi(uσ(1)), [Fi(uσ(2)) · · · , [Fi(uσ(m)), Fj (v)] · · ·] = 0 i 6= j m = 1 − aij

∑
σ∈Sm

[Ei(uσ(1)), [Ei(uσ(2)) · · · , [Ei(uσ(m)), Ej (v)] · · ·] = 0 i 6= j m = 1 − aij

[Ei(u), Fj (v)] = 1

h̄
δij

{
δ(u− − v+)H+

i (u−) − δ(u+ − v−)H−
i (v−)

}
.
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Here we have setBij = 1
2(αi, αj ) and

f (u) =
N−1∏
j=1

u − jh̄

u + jh̄
.

To compare with the known results atc = 0 [KT], let us write down the
commutation relations componentwise. The Fourier components of the generating series
H±

i (u), Ei(u), Fi(u) are of the following form:

H+
i (u) = 1 + h̄

∑
k>0

hiku
−k−1 H−

i (u) = 1 − h̄
∑
k<0

hiku
−k−1

Ei(u) =
∑
k∈Z

eiku
−k−1 Fi(u) =

∑
k∈Z

fiku
−k−1.

For c = 0, the commutation relations ofDYh̄(slN) in terms of the above Fourier component
look simple as follows.

Corollary 3.5.

[hik, hjl ] = 0 [hi0, x
±
j l ] = ±2Bijx

±
j l [x+

ik, x
−
j l ] = δijhik+l

[hik+1, x
±
j l ] − [hik, x

±
j l+1] = ±h̄Bij [hik, x

±
j l ]+

[x±
ik+1, x

±
j l ] − [x±

ik, x
±
j l+1] = ±h̄Bij [x±

ik, x
±
j l ]+∑

σ∈Sm

[x±
ikσ(1)

, [x±
ikσ(2)

, · · · , [x±
ikσ(m)

, x±
j l ] · · ·] = 0 i 6= j m = 1 − aij

for k, l ∈ Z, where we setx+
ik = eik, x−

ik = fik and [x, y]+ = xy + yx for x, y ∈ DYh̄(slN).

These relations are the same as in [KT] with ¯h = 1. The set{hik, x
±
ik|1 6 i 6 N −1, k ∈

Z>0} provides the Drinfel’d generators ofYh̄(slN) [Dr3].
Let us set

E±
i (u) = 1

h̄
e±
i,i+1(u∓ + 1

2h̄i) F±
i (u) = 1

h̄
f ±

i+1,i (u± + 1
2h̄i)

so thatE±
i (u) = E+

i (u) − E−
i (u), F±

i (u) = F+
i (u) − F−

i (u). (See theorem 3.2 for the
definition of e±

i,i+1(u) and f ±
i+1,i (u).) Let us denoteDY for DYh̄(slN) and DY± be the

subalgebra ofDY generated byei,k, fi,k, respectively. Set

N ± =
∑
i,k

x±
ikDY±.

We get the partial results of the coproduct of the currentsE±
i (u), F±

i (u), H±
i (u), K±(u)

which is sufficient for our purpose.

Lemma 3.6.

(i) 1(E±
i (u)) ≡ E±

i (u) ⊗ 1 + H±
i (u∓) ⊗ E±

i (u ∓ 1
2h̄c1)

(ii) 1(F±
i (u)) ≡ 1 ⊗ F±

i (u) + F±
i (u ± 1

2h̄c2) ⊗ H±
i (u±)

(iii) 1(H±
i (u)) ≡ H±

i (u ± 1
4h̄c2) ⊗ H±

i (u ∓ 1
4h̄c1)

mod(N −DY ⊗ DYN +) ∩ (DYN − ⊗ N +DY )

(iv) 1(K±(u)) = K±(u ± 1
4h̄c2) ⊗ K±(u ∓ 1

4h̄c1).
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The last formula follows from the fact that the equationK±(u) = q-det.T ±(u) holds.
We remark that these formula forYh̄(slN) are obtained in [CP2]. The exact formulae in the
case ofDYh̄(gl2) are given in [IK]. For more information on the coproduct formulae, see
appendix B.

3.4. Quantum current

Here we give a remark concerning definition 3.1 and introduce the so-called quantum current
[RS].

Let R(u) be Yang’sR-matrix normalized as (1) andR(u) = fN(u)R(u) with some
scalar functionfN(u). We remark that even if we change the normalization ofR-matrix in
definition 3.1 toR(u) defined here, the commutation relations given by corollary 3.4 never
change except for the relations betweenK±(u). It changes as follows:

f (u− − v+)K+(u)K−(v) = K−(v)K+(u)f (u+ − v−)

where

f (u) =
{

N∏
i,j=1

fN(u + (i − j)h̄)

}
N−1∏
k=1

u − kh̄

u + kh̄
.

If we set

fN(u) = 0(u/Nh̄)0(1 + u/Nh̄)

0(1/N + u/Nh̄)0(1 − 1/N + u/Nh̄)

where0(u) is the Euler’s Gamma function, thenf (u) = 1. In the rest of this subsection,
we fix the functionfN(u) as above. Let us define the quantum currentT (u) as

T (u) = T +(u−)T −(u+)−1.

They satisfy the following commutation relations.

Lemma 3.7.

R(u − v)
1
T (u)R21(v − u − h̄c)

2
T (v) = 2

T (v)R(u − v − h̄c)
1
T (u)R21(v − u)

R(u− − v+)
1
T (u)R21(v− − u+)

2
T

±(v±) = ρN(u∓ − v±)
2
T

±(v±)
1
T (u)

whereρN(u) = fN(u)fN(−u).

SinceT (u) can be regarded as aN × N matrix, we can define the currentl(u) by

l(u) = tr.T (u).

At the critical level (c = −N ), one can show thatl(u) commutes withT ±(u) so thatl(u)

provides the Yangian deformed Gelfand–Dickii algebra [FR].

Remark .Everything given in this section makes sense as a formal series in ¯h except for
this subsection. Since the functionfN(u) chosen here cannot be regarded as a formal series
in h̄, the formulae given after the specific choice offN(u) must be considered only as
asymptotics.

4. Representation theory ofDYh̄(g)

Unfortunately, we have no general theorem about the representation theory ofDYh̄(g)

at the moment due to the lack of triangular decomposition and the grading operatord.
Nevertheless, we expect that the representation theory ofDYh̄(g) can be established just as
in the case of quantum affine algebra [CP, J].

In this section we present examples of both finite and infinite-dimensional
representations ofDYh̄(g).
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4.1. Finite-dimensional representations

At c = 0, the Heisenberg subalgebra becomes central inDYh̄(glN). Hence by Schur’s
lemma, it is sufficient for investigating the irreducible finite-dimensional representations
to consider theDYh̄(slN) case. From corollary 3.5, we expect that most of the finite-
dimensionalYh̄(slN)-module can be extended toDYh̄(slN)-module.

Let d = {di,k}16i6N−1,k∈Z be a subset ofA. A DYh̄(slN)-module V is called the
pseudo-highest-weight module with pseudo-highest weightd if there is an unique, up to
scalar multiple, non-zero vectorv ∈ V such thatV is generated byv and

hi,kv = di,kv ei,kv = 0 1 6 ∀ i 6 N − 1 ∀ k ∈ Z.

Here we borrow this terminology from [CP]. Let us denoteV (d) for suchV .

Conjecture 1.(i) Let V be an irreducible finite-dimensionalYh̄(slN)-module whose constant
term of the Drinfel’d polynomials are invertible. ThenV can be lift up to an irreducible
finite-dimensionalDYh̄(slN)-module.

(ii) The irreducible DYh̄(slN)-module V (d) of pseudo-highest weightd is finite
dimensional iff there exist monic polynomialsPi(v) ∈ A[v] 1 6 i 6 N − 1 such that

1 − h̄
∑
k<0

dikv
−k−1 = Pi(v + 1

2(αi, αi)h̄)

Pi(v)
= 1 + h̄

∑
k>0

dikv
−k−1

in the sense that the left-hand side and the right-hand side are the Laurent expansion of the
middle term about 0 and∞, respectively.

The above monic polynomialsPi are called Drinfel’d polynomials. Next we show some
examples which support this conjecture.

Example 4.1 (thesl2 case).Here we omit writing the subscript 1 for simplicity. Let
Wm = ⊕m

j=0Awj be the spin-m2 representation ofsl2 and set

Wm(u) = Wm ⊗A A((u−1))

whereu is thought to be either an indeterminate or an invertible element ofA. It is known
by [CP1] that we can define theYh̄(sl2)-module structure onWm(u). It immediately follows
that their action ofYh̄(sl2) can be extended toDYh̄(sl2).

Lemma 4.1.The actionDYh̄(sl2) is given by

(i) ekwi = {
u + ( 1

2m − i + 1
2)h̄

}k
(m − i + 1)wi−1

(ii) fkwi = {
u + ( 1

2m − i − 1
2)h̄

}k
(i + 1)wi+1

(iii) hkwi =
[{

u + ( 1
2m − i − 1

2)h̄
}k

(i + 1)(m − i)

− {
u + ( 1

2m − i + 1
2)h̄

}k
i(m − i + 1)

]
wi

where we setw−1 = wm+1 = 0.

As a consequence, we obtain the following.

Corollary 4.2. (i) Wm(u) is a pseudo-highest-weight module with pseudo-highest-weight
d = {dk} given by

dk = m

(
u + m − 1

2
h̄

)k

.
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(ii) The Drinfel’d polynomialP associated withWm(u) is given by

P(v) =
{
v − u − m − 1

2
h̄

} {
v − u − m − 3

2
h̄

}
· · ·

{
v − u + m − 1

2
h̄

}
.

Example 4.2 (theslN case (vector representation)).Let u be either an indeterminate or an
invertible element ofA. Set

Vu = V ⊗A A((u−1)) V = ⊕N−1
j=0 Awj .

We can extend the action ofYh̄(slN) to DYh̄(slN) as follows (see example 2.1).

Lemma 4.3.The action ofDY (slN) is given by

(i) ei,kwi =
(

u − N − 1 − i

2
h̄

)k

wi−1 ei,kwj = 0 j 6= i

(ii) fi,kwi−1 =
(

u − N − 1 − i

2
h̄

)k

wi fi,kwj = 0 j 6= i − 1

(iii) hi,kwi−1 =
(

u − N − 1 − i

2
h̄

)k

wi−1

hi,kwi = −
(

u − N − 1 − i

2
h̄

)k

wi hi,kwj = 0 j 6= i, i − 1 .

Hence we have the following.

Corollary 4.4. (i) Vu is a pseudo-highest-weight module with highest weightd = {dik}
given by

d1k =
(

u − N − 2

2
h̄

)k

dik = 0 i 6= 1.

(ii) The Drinfel’d polynomialsPi associated toVu are given by

P1(v) = v −
(

u − N − 2

2
h̄

)
Pi(v) = 1 i 6= 1.

The next example is the generalization of the above example.

Example 4.3 (theslN case).Let g be a Lie algebra of typeAN−1. In example 2.2, we define
irreducible finite-dimensionalYh̄(g)-modulesVa(m3i) for 1 6 i 6 N − 1. Here we give
a sketch of proof that we can extend its action toDYh̄(g). To see this (i) DefineDYh̄(g)-
module structure form = 1, ∀ i. ( Calculate the action on each weight vector explicitly,
then it turns out that the invertibilty in the conjecture is essential.)

(ii) Using the following embedding ofYh̄(g)-module

Va((m + 1)3i) ↪→ Va− 1
2 h̄(m3i) ⊗ Va+ m

2 h̄(3i)

prove that we can defineDYh̄(g)-module structure for∀ m, ∀ i by induction onm.
The details are left to the reader as an exercise.
Note that the Drinfel’d polynomials ofVa(m3i) are exactly the same as in example 2.2.
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4.2. Bosonization of the level 1 module

Here we construct level 1DYh̄(g)-module and vertex operators forg = glN, slN directly in
terms of bosons.

Let h = ⊕N
i=1Cεi be a Cartan subalgebra ofglN , Q = ⊕N−1

i=1 Zαi (αi = εi − εi+1) be
the root lattice ofslN , 3i = 3i − 30 be the classical part of theith fundamental weight
and (·, ·) be the standard bilinear form defined by(εi, εj ) = δij . Let us introduce bosons
{ai,k|1 6 i 6 N, k ∈ Z \ {0}} satisfying

[ai,k, aj,l ] = kδi,j δk+l,0.

4.2.1. TheglN case. Set

Fi,s := A[aj,−k(1 6 j 6 N, k ∈ Z>0)] ⊗ A[Q]e3i+s(
∑N

j=1 εj )/N (0 6 i 6 N − 1)

wheres is a complex parameter andA[Q] is the group algebra ofQ overA. On this space,
we define the action of the operatorsaj,k, ∂εj , e

εj (1 6 j 6 N) by

aj,k · f ⊗ eβ =
{

aj,kf ⊗ eβ k < 0

[aj,k, f ] ⊗ eβ k > 0

∂εj · f ⊗ eβ = (εj , β)f ⊗ eβ for f ⊗ eβ ∈ Fi,s

eεj · f ⊗ eβ = f ⊗ eεj +β.

Theorem 4.5.The following assignment defines aDYh̄(glN)-module structure onFi,s .

k+
j (u) 7→ exp

[
−

∑
k>0

aj,k

k

{(
u + 1

2
h̄

)−k

−
(

u − 1

2
h̄

)−k
}] (

u − 1
2h̄

u + 1
2h̄

)∂εj

k−
j (u) 7→ exp

[ ∑
k>0,r<j

ar,−k

k

{
uk − (u − h̄)k

} +
∑

k>0,r>j

ar,−k

k

{
(u + h̄)k − uk

}]

1

h̄
X+

j (u) 7→ exp

[
−

∑
k>0

aj,−k

k

(
u − 3

4
h̄

)k

+
∑
k>0

aj+1,−k

k

(
u + 1

4
h̄

)k
]

× exp

[∑
k>0

aj,k − aj+1,k

k

(
u + 1

4
h̄

)−k
]

eαj

[
(−1)j−1

(
u + 1

4
h̄

)]∂αj

1

h̄
X−

j (u) 7→ exp

[∑
k>0

aj,−k

k

(
u − 1

4
h̄

)k

−
∑
k>0

aj+1,−k

k

(
u + 3

4
h̄

)k
]

× exp

[∑
k>0

−aj,k + aj+1,k

k

(
u − 1

4
h̄

)−k
]

e−αj

[
(−1)j−1

(
u − 1

4
h̄

)]−∂αj

where we set∂αj
= ∂εj − ∂εj+1.

Next we present the bosonization of type I and type II vertex operators. For this purpose,
let us consider the evaluation module. Set

Vu = V ⊗A A((u−1)) V = ⊕N−1
j=0 Awj .
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We define theDYh̄(glN)-module structure onVu as follows:

k±
i+1(v)wi = f ±(v − u)

v − u + ( 1
2(N − 3) − i)h̄

v − u + ( 1
2(N − 1) − i)h̄

wi

k±
j (v)wi = f ±(v − u)wi otherwise

X+
i (v)wi = h̄δ

(
v − u +

(
N − 1

2
− i

)
h̄

)
wi−1 X+

j (v)wi = 0 otherwise

X−
i (v)wi−1 = h̄δ

(
v − u +

(
N − 1

2
− i

)
h̄

)
wi X−

j (v)wi = 0 otherwise

where we set

f +(u) = 1 f −(u) = u − 1
2(N − 1)h̄

u + 1
2(N − 3)h̄

.

We remark that the restriction of the action ofDYh̄(glN) on the aboveVu to that ofDYh̄(slN)

givesVu in example 4.2 exactly.

Definition 4.1.The vertex operators are intertwiners of the following form:

(i) type I: 8(i,i+1)(u) : Fi+1,s −→ Fi,s−1 ⊗ Vu

(ii) type II: 9(i,i+1)(u) : Fi+1,s −→ Vu ⊗ Fi,s−1.

Here the indices are considered moduloN .

Set

8(i,i+1)(u) =
N−1∑
j=0

8
(ii+1)
j (u) ⊗ wj 9(i,i+1)(u) =

N−1∑
j=0

wj ⊗ 9
(ii+1)
j (u)

We normalize them as

(i) 〈3i, s − 1|8(i,i+1)
i (u)|3i+1, s〉 = 1

(ii) 〈3i, s − 1|9(i,i+1)
i (u)|3i+1, s〉 = 1

where we set|3i, s〉 = 1⊗ e3i+s(
∑N

j=1 εj )/N . We mean by〈3i, s − 1|8(i,i+1)
i (u)|3i+1, s〉 the

coefficient of|3i, s − 1〉 of the element8(i,i+1)
i (u)|3i+1, s〉, and similarly for9(i,i+1)

i (u).
With the above normalization our vertex operators uniquely exist. By using lemma 3.6, we
obtain the bosonization formula of these vertex operators as follows.

Theorem 4.6 (bosonization of vertex operators).For 06 i 6 N − 1

8
(i,i+1)

N−1 (u) = exp

[∑
k>0

aN,−k

k

(
u +

(
N

2
+ 1

4

)
h̄

)k
]

× exp

[ ∑
k>0;16j<N

aj,k

k

(
u −

(
N

2
− 1

4
− j

)
h̄

)−k
]

×e−εN

[
(−1)N−1

(
u +

(
N

2
− 3

4

)
h̄

)]∂3N−1
+(N−i−1)/N

(−1)
1
2 (N−i−1)(N+i−2)
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8
(i,i+1)

k−1 (u) = [8(i,i+1)
k (u), fk,0]

9
(i,i+1)

0 (u) = exp

[∑
k>0

a1,−k

k

(
u −

(
N

2
− 3

4

)
h̄

)k
]

× exp

[ ∑
k>0;1<j6N

aj,k

k

(
u −

(
N

2
+ 1

4
− j

)
h̄

)−k
]

×e−ε1

[
−

(
u −

(
N

2
− 7

4

)
h̄

)]−∂31
+(N−i−1)/N

(−1)
1
2 i(i+1)

9
(i,i+1)
k (u) = [9(i,i+1)

k−1 (u), ek,0].

4.2.2. TheslN case. Here we keep the same notation as inglN case unless otherwise
stated. Set

Fi := A[aj,−k(1 6 j 6 N − 1, k ∈ Z>0)] ⊗ A[Q]e3i (0 6 i 6 N − 1).

As in the previous subsection, we define the action of the operatorsaj,k, ∂αj
, eαj (1 6 j 6

N − 1) on Fi .

Theorem 4.7.The following assignment defines aDYh̄(slN)-module structure onFi .

H+
j (u) 7→ exp

[
−

∑
k>0

aj,k

k

{(
u + 1

2
h̄

)−k

−
(

u − 1

2
h̄

)−k
}] (

u − 1
2h̄

u + 1
2h̄

)−∂αj

H−
j (u) 7→ exp

[
−

∑
k>0

aj,−k

k

{
(u + h̄)k − (u − h̄)k

}

+
∑
k>0

aj+1,−k + aj−1,−k

k

{(
u + 1

2
h̄

)k

−
(

u − 1

2
h̄

)k
}]

Ej(u) 7→ exp

[∑
k>0

aj,−k

k

{(
u + 1

4
h̄

)k

+
(

u − 3

4
h̄

)k
}

−
∑
k>0

aj+1,−k + aj−1,−k

k

(
u − 1

4
h̄

)k
]

exp

[
−

∑
k>0

aj,k

k

(
u + 1

4
h̄

)−k
]

×eαj

[
(−1)j−1

(
u + 1

4
h̄

)]∂αj

Fj (u) 7→ exp

[
−

∑
k>0

aj,−k

k

{(
u + 3

4
h̄

)k

+
(

u − 1

4
h̄

)k
}

+
∑
k>0

aj+1,−k + aj−1,−k

k

(
u + 1

4
h̄

)k
]

exp

[∑
k>0

aj,k

k

(
u − 1

4
h̄

)−k
]

×e−αj

[
(−1)j−1

(
u − 1

4
h̄

)]−∂αj

.
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Before investigating the vertex operators, we shall give some remarks here. Every field
in theorems 4.5–4.7 make sense as a formal series in ¯h if we use the binomial expansion

(u + ah̄)k =
∑
j>0

(
k

j

)
(ah̄)juk−j a ∈ A, k ∈ Z.

Now one can prove these theorems by some routine calculations. Notice that because of the
artificial choice of the action of the Heisenberg subalgebra, the bosonization of the vertex
operators in the case ofDYh̄(glN) has such nice expression. For theDYh̄(slN) case, as we
will see soon, we have some subtle problem to bosonize the vertex operators.

To introduce the vertex operators of type I and type II, let us fix the evaluation module
Vu given in example 4.2.

Definition 4.2.The vertex operators are intertwiners of the following form:

(i) type I: 8(i,i+1)(u) : Fi+1 −→ Fi ⊗ Vu

(ii) type II: 9(i,i+1)(u) : Fi+1 −→ Vu ⊗ Fi .

Here the indices are considered moduloN .

Set

8(i,i+1)(u) =
N−1∑
j=0

8
(ii+1)
j (u) ⊗ wj 9(i,i+1)(u) =

N−1∑
j=0

wj ⊗ 9
(ii+1)
j (u)

We normalize them as

(i) 〈3i |8(i,i+1)
i (u)|3i+1〉 = 1

(ii) 〈3i |9(i,i+1)
i (u)|3i+1〉 = 1

Just as in the case ofDYh̄(glN), our vertex operators uniquely exist and the bosonization
formulae are as follows.

Theorem 4.8 (bosonization of vertex operators).For 06 i 6 N − 1

8
(i,i+1)

N−1 (u) = lim
n→∞ 8

(i,i+1)

N−1 (u)n

8
(i,i+1)

N−1 (u)n = exp

[∑
k>0

aN−1,−k

k

(
u + 3

4
h̄

)k
]

exp

[
−

∑
k>0;16j<N

aj,k

2k
f

(I)
j,k

(
u − 1

4h̄
)
n

]

×e3N−1

{
N−1∏
j=1

[
g

(I)
j

(
u − 1

4h̄
)
n

]∂αj

} [
(−1)(N−1)/2(Nh̄)−(N−2)/2

]∂3N−1
−(i+1)/N

×g
(I)
i+1

(
u − 1

4h̄
)−1

n

[
u −

(
N − i

2
− 3

4

)
h̄

]
(−1)

1
2 (N−i)(N+i−1)

8
(i,i+1)

k−1 (u) = [8(i,i+1)
k (u), fk,0]

9
(i,i+1)

0 (u) = lim
n→∞ 9

(i,i+1)

0 (u)n

9
(i,i+1)

0 (u)n = exp

[
−

∑
k>0

a1,−k

k

(
u −

(
N

2
− 1

4

)
h̄

)k
]

exp

[ ∑
k>0;16j<N

aj,k

2k
f

(II)
N−j,k

(
u + 1

4h̄
)
n

]
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×e−31

{
N−1∏
j=1

[
g

(II)
N−j

(
u + 1

4h̄
)
n

]−∂αj

} [
(−1)−

1
2 (Nh̄)−(N−2)/2

]−∂31
+(N−i−1)/N

×g
(II)
N−i−1

(
u + 1

4h̄
)
n
(−1)

1
2 i(i+1)

9
(i,i+1)
k (u) = [9(i,i+1)

k−1 (u), ek,0].

Here the functionsf ∗
j,k(u)n, g

∗
j (u)n (∗ = (I), (II)) are defined as follows:

f ∗
j,k(u)n =

j−1∑
l=0

f ∗
k

(
u + 1

2(j − 1 − 2l)h̄
)
n

1 6 j < N

g∗
j (u)n =


1 j = 0[

j−1∏
l=0

g∗ (
u + 1

2(j − 1 − 2l)h̄
)
n

] 1
2

j > 0

f
(I)
k (u)n =

(
u − N − 2

2
h̄

)−k

+
n−1∑
l=0

{(
u + N

2
h̄ + Nh̄l

)−k

−
(

u + N

2
h̄ + (Nl + 1)h̄

)−k

+
(

u − 3N

2
h̄ − (Nl − 1)h̄

)−k

−
(

u − N

2
h̄ − Nh̄l

)−k
}

f
(II)
k (u)n = u−k +

n−1∑
l=0

{
(u + Nh̄ + Nh̄l)−k − (u + h̄ + Nh̄l)−k

+ (u − (N − 1)h̄ − Nh̄l)−k − (u − Nh̄ − Nh̄l)−k
}

g(I)(u)n =
(

u − N − 2

2
h̄

)
e(N−2)γ /N

(u + 1
2Nh̄)(u − 3

2Nh̄ + h̄)

(u − 1
2Nh̄)(u + 1

2Nh̄ + h̄)

×
n−1∏
l=1

[
(u + 1

2Nh̄ + Nh̄l)(u − 3
2Nh̄ − (Nl − 1)h̄)

(u − 1
2Nh̄ − Nh̄l)(u + 1

2Nh̄ + (Nl + 1)h̄)

]
e(N−2)/Nl

g(II)(u)n = ue(N−2)γ /N (u + Nh̄)(u − (N − 1)h̄)

(u + h̄)(u − Nh̄)

×
n−1∏
l=1

[
(u + Nh̄ + Nh̄l)(u − (N − 1)h̄ − Nh̄l)

(u + h̄ + Nh̄l)(u − Nh̄ − Nh̄l)

]
e(N−2)/Nl

whereγ is the Euler constant defined by

γ = lim
n→∞

( n∑
k=1

1

k
− logn

)
.

We remark that the following formulae hold:

(i) exp

[
−

∑
k>0

1

2k
f ∗

k (u)nv
k

]
=

[
g∗(u − v)n

g∗(u)n

] 1
2

for ∗ = (I), (II)
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(ii) lim
n→∞ g∗(u)n =



(
u − N − 2

2
h̄

)
0( 1

2 − u/Nh̄)0( 1
2 + (u + h̄)/Nh̄)

0( 1
2 + u/Nh̄)0( 3

2 − (u + h̄)/Nh̄)

for ∗ = (I)

u
0((u + h̄)/Nh̄)0(1 − u/Nh̄)

0(1 − (u + h̄)/Nh̄))0(1 + u/Nh̄)

for ∗ = (II).

The second formula can be proved by using the famous Weierstrass formula for the Gamma
function

1

0(u)
= ueγu

∞∏
n=1

(
1 + u

n

)
e−u/n.

Remark .For eachn ∈ Z>0, the fields8
(i,i+1)

N−1 (u)n and 9
(i,i+1)

0 (u)n make sense as formal
series inh̄. But after taking the limitn → ∞, they cannot expand with respect to ¯h. They
have to be regarded as, for example, meromorphic functions. Such a feature has never
appeared in the quantum affine case [K].

Here we give a sketch of a proof of theorem 4.8 for the type I vertex operator,
considering theN = 2 case for simplicity. We also give some comments on how to
prove the general case.

We define the normal ordering :· : of the fields by regardingaj,k(k < 0), eαj (1 6 j 6
N − 1) as creation operators andaj,k(k > 0), ∂αj

(1 6 j 6 N − 1) as annihilation operators.
After some calculation, we obtain the following operator product expansion (OPE):

8
(i,i+1)

1 (u)nH
−
1 (v) =

[(
u − v + 3

4h̄

u − v − 1
4h̄

)2 (u − v + (2n − 1
4)h̄)(u − v − (2n + 1

4)h̄)

(u − v + (2n + 3
4)h̄)(u − v − (2n + 5

4)h̄)

] 1
2

× : 8
(i,i+1)

1 (u)nH
−
1 (v) :

8
(i,i+1)

1 (u)nE1(v) = (−1)
1
2

[
(u − v + 1

2h̄)2 u − v − (2n + 1
2)h̄

u − v + (2n + 1
2)h̄

] 1
2

: 8
(i,i+1)

1 (u)nE1(v) : .

Taking the limitn → ∞, fixing the branch, we get

8
(i,i+1)

1 (u)H−
1 (v) = u − v + 3

4h̄

u − v − 1
4h̄

: 8
(i,i+1)

1 (u)H−
1 (v) :

8
(i,i+1)

1 (u)E1(v) = −(u − v + 1
2h̄) : 8

(i,i+1)

1 (u)E1(v) : .

These are precisely the expected OPE from the intertwining property. The other OPEs can
be obtained easily and we omit them here. The normalization condition can also be checked
in a similar manner.

Next to prove the general case, first simplify the OPE, as above, to see the phase factor
and then calculate the limit using the infinite product form of the Gamma function. In this
way we can prove that our formulae give the desired OPE and the normalization.
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5. Discussion

In this paper, we have constructed the Yangian doubleDYh̄(g) with a central extension for
g = glN.slN . We also presented Drinfel’d generators which are defined in [Dr3]. Using these
generators, we studied both finite- and infinite-dimensional representations. We presented a
conjecture for the irreducible finite-dimensional representations and gave some examples to
check the validity of them. The bosonization of the level 1 modules and the vertex operators
were also given.

It seems that the Yangian doubleDYh̄(g) for another type of simple finite-dimensional
Lie algebrag can be defined by corollary 3.4 withoutK±(u) whereA = (aij ) is now the
corresponding Cartan matrix. Suppose for a moment that this is true. Then the rest of
section 3 also holds without any change. In particular, wheng is a simply laced algebra, we
can generalize theorem 4.7 by a simple modification whose quantum affine version is treated
in [FJ]. There are several other problems which we have already mentioned in our previous
paper [IK]. The relation between the quantum affine algebraUq(ĝ) and the Yangian double
DYh̄(g) is quite mysterious.

For physical applications, it is important to investigate the infinite-dimensional
representation theory ofDYh̄(g). In this paper, we give the bosonization of the level 1
moduleFi and the vertex operators among them. As we have seen in theorem 4.8, the
Fourier coefficients of the vertex operators loose sense unlike to the quantum affine case
[JM, K]. This means that we have to consider not the Fourier components but the currents
themselves. Namely we have to consider a new class of the algebra and their representation
theory to investigate further. It is also interesting to see the connection between the formulae
in [Lu] and ours.
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Appendix A. Review of quantum groups

In this appendix, we recall some facts about universalR andL-operator.

A.1. UniversalR
Let R be the universalR-matrix [Dr1] for Uq(ŝlN). For the definition and the properties of
universalR-matrix, see [Dr1, J].

We slightly modifyR to defineL-operators. Define

R′+ = q− 1
2 (c⊗d+d⊗c)σ (R−1)q− 1

2 (c⊗d+d⊗c)

R′− = q
1
2 (c⊗d+d⊗c)Rq

1
2 (c⊗d+d⊗c)

R′±(z) = (zd ⊗ id)R′±(z−d ⊗ id).

Hereσ stands for the flip of tensor componentsσ(a⊗b) = b⊗a. We remark thatR′±(z) are
formal power series inz∓1. The properties of universalR-matrix can be readily translated
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in terms ofR′±. For x ∈ Uq(ŝlN), we write1(x) = x(1) ⊗ x(2). Then

R′±(z)
(

Ad(zdq± 1
2 c2d)x(1) ⊗ Ad(q± 1

2 c1d)x(2)

)
=

(
Ad(zdq∓ 1

2 c2d)x(2) ⊗ Ad(q∓ 1
2 c1d)x(1)

)
R′±(z).

Herec1 = c ⊗ 1 andc2 = 1 ⊗ c as in section 3.
The Yang–Baxter equation takes the form

R′±
12(z/w)R′±

13(zq
±c2)R′±

23(w) = R′±
23(w)R′±

13(zq
∓c2)R′±

12(z/w)

R′+
12(z/wq−c3)R′+

13(z)R
′−
23(w) = R′−

23(w)R′+
13(z)R

′+
12(z/wqc3).

For completeness we give the transformation properties ofR′± under the coproduct1, the
counit ε and the antipodeS.

(1 ⊗ id) R′±(z) = R′±
13(zq

± 1
2 c2)R′±

23(zq
∓ 1

2 c1)

(id ⊗1) R′±(z) = R′±
13(zq

∓ 1
2 c2)R′±

12(zq
± 1

2 c3)

(ε ⊗ id)R′±(z) = (id ⊗ε)R′±(z) = 1

(S ⊗ id)R′±(z) = (id ⊗S−1)R′±(z) = R′±(z)−1.

A.2. L-operators

Let now πV : Uq(ŝlN)′ → End(V ) be a finite-dimensional representation, whereUq(ŝlN)′

signifies the subalgebra ofUq(ŝlN) with qd being dropped. The evaluation representation
πVz

associated withV is defined by

πVz
(x) = πV

(
zdxz−d

) ∀ x ∈ Uq(ŝlN)′.

Introduce theL-operators

L±(z) = L±
V (z) = (

πVz
⊗ id

) R′±.

Taking the image of the Yang–Baxter equation forR′± in End(Vz)⊗ End(Vw)⊗ id, we find
the following RLL relations:

R±
12(z/w)

1
L

±(z)
2
L

±(w) = 2
L

±(w)
1
L

±(z)R±
12(z/w)

R+
12(q

−cz/w)
1
L

+(z)
2
L

−(w) = 2
L

−(w)
1
L

+(z)R+
12(q

cz/w)

where we set

R±(z/w) = (
πVz

⊗ πVw

) R′±.

Introducing the matrix unitsEij let us define the entriesL±
ij (z) by

L±(z) =
∑

Eij ⊗ L±
ij (z).

In these terms, the Hopf algebra structure reads as follows:

1
(
L±

ij (z)
)

=
∑

k

L±
kj (q

± 1
2 c2z) ⊗ L±

ik(q
∓ 1

2 c1z)

ε
(
L±

ij (z)
)

= δij

S
(
tL±(z)

) = (
tL±(z)

)−1

S−1
(
L±(z)

) = (
L±(z)

)−1
.
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In the last two lines we set

S
(
tL±(z)

) =
∑

Eji ⊗ S
(
L±

ij (z)
)

S−1
(
L±(z)

) =
∑

Eij ⊗ S−1
(
L±

ij (z)
)

.

Let U± be Hopf subalgebras ofUq(ŝlN) generated byq± 1
2 c and the Fourier components of

L±(z). The subalgebraU− is the dual Hopf algebra ofU+ with opposite comultiplication
and the Hopf pairing betweenU± has the explicit description as follows:

〈L+(z), L−(w)〉 =
∑

〈L+
ij (z), L

−
kl(w)〉Eij ⊗ Ekl = R+(z/w).

We remark that all of these formulae motivate our choice ofT ±(u)-matrix.

Appendix B. Several formulae for T -matrices

In this appendix, we collect some formulae which seem well known to the specialists [Ta].
Here we denoteT (u) for T ±(u) for simplicity.

B.1. The quantum determinant of theT -matrix

In this subappendix, we give a brief review on quantum determinant for convenience. See
[MNO, KS] for further information.

B.1.1. Quantum minor. Let V be a rankN A-free module andP ∈ End(V ⊗ V ) be a
permutation operatorPv ⊗ w = w ⊗ v (v, w ∈ V ). Let us fix the normalization of Yang’s
R-matrix as

R(u) = I + h̄

u
P ∈ End(V ⊗ V ).

Recall thatT (u) enjoy the following commutation relations:

R(u − v)
1
T (u)

2
T (v) = 2

T (v)
1
T (u)R(u − v).

Suppose the comultiplication ofT (u) is given by

1(T (u)) = T (u)
·⊗T (u) or equivalently 1(tij (u)) =

N∑
k=1

tik(u) ⊗ tkj (u).

For simplicity, setRi,j = Ri,j (ui − uj ) and

R(u1, u2, · · · , up) = (Rp−1,p)(Rp−2,pRp−2,p−1) · · · (R1,pR1,p−1 · · ·R1,2)

where the meaning of the lower indices are the same as in section 3.

Lemma B.1.

R(u1, u2, · · · , up)
1
T (u1)

2
T (u2) · · · p

T (up) = p

T (up) · · · 2
T (u2)

1
T (u1)R(u1, u2, · · · , up).

Let A[Sp] be the group algebra of thepth symmetric group overA which naturally
acts onV ⊗p and set

ap =
∑

σ∈Sp

(sgnσ)σ ∈ A[Sp] Ap = 1

p!
ap.

Lemma B.2 ([MNO]).For ui − ui+1 = −h̄, 1 6 ∀ i < p

R(u1, u2, · · · up) = ap.
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One can prove this lemma by induction onp. Combining these two lemmas, we obtain
the following.

Lemma B.3.

Ap

1
T

(
u − p − 1

2
h̄

)
2
T

(
u − p − 3

2
h̄

)
· · · p

T

(
u + p − 1

2
h̄

)

= p

T

(
u + p − 1

2
h̄

)
· · · 2

T

(
u − p − 3

2
h̄

)
1
T

(
u − p − 1

2
h̄

)
Ap.

Setp = N in the above lemma. Since theN th exterior power
∧N

V is of rank 1 and
AN stabilizes

∧N
V , the left hand side of the above equation is(scalar) × AN .

Definition B.1 (quantum determinant).

q-det.T (u)AN = N

T

(
u + N − 1

2
h̄

)
· · · 2

T

(
u − N − 3

2
h̄

)
1
T

(
u − N − 1

2
h̄

)
AN.

Explicitly, we have

Proposition B.4.

q-detT (u) =
∑

σ∈SN

(sgnσ)tσ(1),1

(
u − N − 1

2
h̄

)
tσ (2),2

(
u − N − 3

2
h̄

)

· · · tσ (N),N

(
u + N − 1

2
h̄

)

=
∑

σ∈SN

(sgnσ)t1,σ (1)

(
u + N − 1

2
h̄

)
t2,σ (2)

(
u + N − 3

2
h̄

)

· · · tN,σ (N)

(
u − N − 1

2
h̄

)
.

Next we explain some facts about quantum minors of theT -matrix. For two index
subsetsI, J ⊂ {1, 2 · · ·N} with #I = #J = p , 1 6 p 6 N (the cardinality), set

TIJ (u) = (tij (u))i∈I,j∈J .

By the definition ofT (u), we obtain the following commutation relations:

Rp(u − v)
1
T IJ (u)

2
T IJ (v) = 2

T IJ (v)
1
T IJ (u)Rp(u − v)

Rp(u) = I + h̄

u
P ∈ End(Vp ⊗ Vp)

whereVp is a rank-p A-free module. Thus by an argument similar to that above, we get
the explicit expression of quantum minorq-detTIJ (u) as follows. Set

I = {i1, i2, · · · , ip} J = {j1, j2, · · · , jp}.
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Lemma B.5.

q-detTIJ (u) =
∑

σ∈Sp

(sgnσ)tiσ(1),j1

(
u − p − 1

2
h̄

)
tiσ(2),j2

(
u − p − 3

2
h̄

)

· · · tiσ(N),jN

(
u + p − 1

2
h̄

)

=
∑

σ∈Sp

(sgnσ)ti1,jσ(1)

(
u + p − 1

2
h̄

)
ti2,jσ(2)

(
u + p − 3

2
h̄

)

· · · tiN ,jσ(N)

(
u − p − 1

2
h̄

)
.

The following corollary is the immediate consequence of the above expression.

Corollary B.6. For eachσ ∈ Sp

q-detTIσ J (u) = q-detTIJσ (u) = (sgnσ) q-detTIJ (u)

where we setI σ = {iσ−1(1), iσ−1(2), · · · , iσ−1(p)} and similarly forJ σ .

Using this corollary, one can calculate the coproduct of quantum minors as follows.

Corollary B.7.

1(q-detTIJ (u)) =
∑
K

q-detTIK(u) ⊗ q-detTKJ (u)

where the summation runs over all of the ordered subsetK = {k1, k2, · · · , kp} ⊂ S satisfying
1 6 k1 < k2 < · · · < kp 6 N .

B.1.2. Laplace expansion of theT -matrix. Let {ei}16i6N be anA-free basis ofV and
S = {1, 2, · · · , N} be the index set. For each ordered index subsetI = {i1, i2, · · · , ip} ⊂ S,
we defineeI an element of

∧p
V as

eI =
∑

σ∈Sp

(sgnσ)eiσ(1)
⊗ eiσ(2)

⊗ · · · ⊗ eiσ(p)
.

Note that the set{eI }16i1<i2<···<ip6N provides a basis of
∧p

V . Let EIJ be an element of
End(

∧p
V ) satisfyingEIJ eK = δJKeI . Set

Tp(u) = p

T

(
u + p − 1

2
h̄

)
· · · 2

T

(
u − p − 3

2
h̄

)
1
T

(
u − p − 1

2
h̄

)
Ap.

By lemma B.3, we see thatTp(u) is the element of End(
∧p

V ). More precisely, we have
the following lemma.

Lemma B.8.

Tp(u)eJ =
∑

I

(q-detTIJ (u))eI or equivalently Tp(u) =
∑
I,J

(q-detTIJ (u))EIJ .

One can prove this lemma by using corollary B.6.
Fix p, q ∈ Z>0 such thatp + q = N . Regarding both

∧N
V and

∧p
V ⊗ ∧q

V

as subspaces ofV ⊗N , one can easily expresseS ∈ ∧N
V by linear combinations of

eI ⊗ eJ ∈ ∧p
V ⊗ ∧q

V as follows.
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Lemma B.9.

eS =
∑

I∪J=S;#I=p

(−1)
1
2 p(p+1)+|I |eI ⊗ eJ

where|I | = ∑p

j=1 ij for I = {i1, i2, · · · , ip}.
Combining lemma B.8 and lemma B.9, we obtain the Laplace expansion of theT -matrix.

Proposition B.10 (quantum Laplace expansion).For eachI, J ⊂ S with #I = p, #J = q,
we have

(q-detT (u))δI∪J,SδI∩J,φ =
∑

K∪L=S;#K=p

(−1)|I |+|K| q-detTIK

(
u + q

2
h̄

)

× q-detTJL

(
u − p

2
h̄

)
.

Specializing top = 1 or q = 1 we obtain the quantum minor expansion of theT -matrix.
Namely, setS(i) = S \ {i} and

T̃ (u) = (t̃ij (u))16i,j6N t̃ij (u) = (−1)i+j q-detTS(j),S(i) (u).

Then we get

Corollary B.11.

T

(
u + N − 1

2
h̄

)
T̃

(
u − 1

2
h̄

)
= t T̃

(
u + 1

2
h̄

)
t T

(
u − N − 1

2
h̄

)
= (q-detT (u))I

where the superscriptt denotes the transpose of the matrix.

B.2. Gauss decomposition of theT -matrix

In this subappendix, we explicitly construct the Gauss decomposition ofT (u) in terms of
its quantum minors. Let

T (u) =


1 0

f2,1(u)
. . .

. . .
. . .

fN,1(u) fN,N−1(u) 1




k1(u) 0
. . .

. . .

0 kN(u)



×


1 e1,2(u) e1,N (u)

. . .
. . .

. . . eN−1,N (u)

0 1


be the Gauss decomposition ofT (u) = (tij (u)).

Lemma B.12.

ti,j (u) =



∑
l<i

fi,l(u)kl(u)el,j (u) + ki(u)ei,j (u) i < j

∑
l<i

fi,l(u)kl(u)el,i(u) + ki(u) i = j

∑
l<j

fi,l(u)kl(u)el,j (u) + fi,j (u)ki(u) i > j.
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For 16 p, q 6 N , let us defineTp,q(u) submatrices ofT (u) as follows.

Definition B.2.(i) p = q:

Tp,p(u) = (
ti,j (u)

)
16i,j6p

(ii) p < q:

Tp,q(u) =


t1,1(u) . . . t1,p−1(u) t1,q(u)

...
...

...

tp−1,1(u) . . . tp−1,p−1(u) tp−1,q(u)

tp,1(u) . . . tp,p−1(u) tp,q(u)


(iii) p > q:

Tp,q(u) =


t1,1(u) . . . t1,q−1(u) t1,q(u)

...
...

...

tq−1,1(u) . . . tq−1,q−1(u) tq−1,q(u)

tp,1(u) . . . tp,q−1(u) tp,q(u)

 .

Using lemma B.12, we can explicitly describe the Gauss decomposition ofTp,q(u) as
follows.

Lemma B.13.(i) p = q:

Tp,p(u) =


1 0

f2,1(u)
. . .

...
. . .

fp,1(u) · · · fp,p−1(u) 1




k1(u) 0
. . .

. . .

0 kp(u)



×


1 e1,2(u) · · · e1,p(u)

. . .
. . .

...

. . . ep−1,p(u)

0 1


(ii) p < q:

Tp,q(u) =



1 0 0

f2,1(u)
. . .

...
. . .

. . .

fp−1,1(u) · · · fp−1,p−2(u) 1

fp,1(u) . . . . . . . . . . . . . . . . . fp,p−1(u) 1



×



k1(u) 0
. . .

. . .

kp−1(u)

0 kp(u)ep,q(u)


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×



1 e1,2(u) · · · e1,p−1(u) e1,q(u)

. . .
. . .

...
...

. . . ep−2,p−1(u)
...

0 1 ep−1,q(u)

0 1


(iii) p > q:

Tp,q(u) =



1 0 0

f2,1(u)
. . .

...
. . .

. . .

fq−1,1(u) · · · fq−1,q−2(u) 1

fp,1(u) . . . . . . . . . . . . . . . . . fp,q−1(u) 1



×



k1(u) 0
. . .

. . .

kq−1(u)

0 fp,q(u)kq(u)



×



1 e1,2(u) · · · e1,q−1(u) e1,q(u)

. . .
. . .

...
...

. . . eq−2,q−1(u)
...

0 1 eq−1,q(u)

0 1


.

Let

Tp,q(u) = Fp,q(u)Kp,q(u)Ep,q(u)

be the Gauss decomposition ofTp,q(u) and setr = min{p, q}. Comparing the(r, r)
component of the formula

Fp,q(u)−1 = Kp,q(u)Ep,q(u)Tp,q(u)−1

on both sides together with lemma B.13, we obtain the following.

Lemma B.14.

(i) kp(u) = 1[
Tp,p(u)−1

]
p,p

(ii) ep,q(u) = [
Tp,p(u)−1

]
p,p

1[
Tp,q(u)−1

]
p,p

(iii) fp,q(u) = 1[
Tp,q(u)−1

]
q,q

[
Tq,q(u)−1

]
q,q

where
[
Tp,q(u)−1

]
a,b

signifies the(a, b) component of the matrixTp,q(u)−1.
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Set

1p,q(u) := q-det.Tp,q(u) 1p(u) := q-det.Tp,p(u).

Since we can express the matrix components ofTp,q(u)−1 by their quantum minors
lemma B.11, combining these with lemma B.14, we obtain the following results.

Theorem B.15.

(i) kp(u) = 1p

(
u − p − 1

2
h̄

)
1p−1

(
u − p

2
h̄
)−1

(ii) ep,q(u) = 1p

(
u − p − 1

2
h̄

)−1

1p,q

(
u − p − 1

2
h̄

)

(iii) fp,q(u) = 1p,q

(
u − q − 1

2
h̄

)
1q

(
u − q − 1

2
h̄

)−1

.
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